Complex regional pain syndrome (CRPS) is a chronic pain condition often involving hyperalgesia and allodynia of the extremities. CRPS is divided into CRPS-I and CRPS-II. Type I occurs when there is no confirmed nerve injury. Type II is when there is known associated nerve injury. Female gender is a risk factor for developing CRPS. Other risk factors include fibromyalgia and rheumatoid arthritis. Unfortunately, the pathogenesis of CRPS is not yet clarified. Some studies have demonstrated different potential pathways. Neuropathic inflammation, specifically activation of peripheral nociceptors of C-fibers, has been shown to play a critical role in developing CRPS. The autonomic nervous system (ANS) is involved. Depending on whether it is acute or chronic CRPS, norepinephrine levels are either
Thoracic outlet syndrome comprises a group of disorders that result in compression of the brachial plexus and subclavian vessels exiting the thoracic outlet. Symptoms include pain, paresthesia, pallor, and weakness depending upon the compromised structures. While consensus in diagnostic criteria has not yet been established, a thorough patient history, physical exam, and appropriate imaging studies are helpful in diagnosis. General first-line therapy for thoracic outlet syndrome is a conservative treatment, and may include physical therapy, lifestyle modifications, NSAIDs, and injection therapy of botulinum toxin A or steroids. Patients who have failed conservative therapy are considered for surgical decompression. This article aims to review the epidemiology, etiology, relevant anatomy, clinical presentations, diagnosis, and management of thoracic outlet syndrome.
Background: A variety of skin manifestations have been associated with COVID-19 infection. Acral lesions on hands and feet, closely resembling chilblains, have been reported in association with COVID-19, which are nonspecific. These acro-ischemic painful lesions have been described mainly in asymptomatic and mildly symptomatic pediatric COVID-19 positive patients, without a precise pathogenetic mechanism.COVID-19-induced chilblains may portend an indolent course and a good outcome. In young patients, the IFN-1 response induces microangiopathic changes and produces a chilblain lupus erythematosus-like eruption with vasculitic neuropathic pain features. Objectives: This paper presented a case series of pediatric patients with COVID-19-related skin lesions and neuropathic-like pain. Methods: Clinical outcomes were collected from 11 patients diagnosed with painful erythematous skin lesions with neuropathic-like pain and positive IgG for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: It is a mildly symptomatic condition not related to severe pain rates, and it is treated with paracetamol due to the transitory nature of the problem, which provides good results. Conclusions: A particular point of interest is skin lesion manifestation as a further indirect sign of SARS-CoV-2 infection. Due to the initial manifestation of chilblains in pauci-symptomatic pediatric patients, they need to be immediately tested and isolated. Chilblains can be considered a clinical clue to suspect SARS-CoV-2 infection and help in early diagnosis, patient triage, and infection control.
BackgroundIn pursuit of improvement in cardiopulmonary resuscitation (CPR), new technologies for the measurement and assessment of CPR quality are implemented. In our study, we assessed the kinematics of the rescuer during continuous chest compression (CCC–CPR). The proper performance of the procedure is a survival predictor for patients with cardiac arrest (CA). The purpose of the study was a prospective assessment of the kinematics of the rescuer’s body with consideration given to the depth and rate of chest compression (CC) as the indicator of properly performed CC maneuver by professional and non-professional rescuers during a simulation of a 10-min CCC using a manikin.MethodsForty participants were enrolled in the study. CCC–CPR was performed in accordance with the 2015 AHA guidelines on a manikin positioned on the floor. Kinematic data on the movement were obtained from the measuring system (X-sens MVN Biomech) transmitting information from 17 inertial sensors. Measurement data were imported to the author’s program RKO-Kinemat written in the Matlab and C # environments. Two groups of results were distinguished: Group I—results of CC with the depth of ≥ 40 mm and Group 2—CC results with the depth of < 40 mm.ResultsThe multiple regression model demonstrated that the path length, left knee flexion angle, and left elbow flexion angle were the essential elements of the rescuer’s kinematics that facilitated achieving and maintaining the normal depth of CC.ConclusionsWe believe that raising the rescuer’s hips by moving the center of the rescuer’s body over the point of sternal compression increases the value of the CC force vector, thereby increasing the depth of CC. In addition, we observed that, during an effective CC, the rescuer was unable to maintain arms straight and, in consequence, a slight elbow flexion was observed. It, however, did not influence the quality of the maneuver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.