Nitrogen-rich heterocyclic compounds have had a profound impact on human health, as these chemical motifs are found in a large number of drugs used to combat a broad range of diseases and pathophysiological conditions. Advances in transition metal-mediated cross-coupling have simplified the synthesis of such molecules; however, the development of practical and selective C–H functionalization methods that do not rely upon prefunctionalized starting materials is an underdeveloped area.1–9 Paradoxically, the innate properties of heterocycles that make them so desirable for biological applications render them challenging substrates for direct chemical functionalization, such as limited solubility, functional group incompatibilities, and reagent/catalyst deactivation. Herein we report that zinc sulfinate salts9 can be used to transfer alkyl radicals to heterocycles, allowing for a mild, direct and operationally simple formation of medicinally relevant C–C bonds while reacting in an orthogonal fashion to other innate C–H functionalization methods (Minisci, borono-Minisci, electrophilic aromatic substitution, transition metal-mediated C–H insertion, C–H deprotonation).2–7,9 A toolkit of these reagents was prepared and reacted across a wide range of heterocycles (natural products, drugs, building blocks) without recourse to protecting group chemistry, and can even be employed in a tandem fashion in a single pot in the presence of water and air.
Molecular scaffolds containing alkylfluorine substituents are desired in many areas of chemical research from materials to pharmaceuticals. Herein, we report the invention of a new reagent (Zn(SO2CF2H)2, DFMS) for the innate difluoromethylation of organic substrates via a radical process. This mild, operationally simple, chemoselective, and scalable difluoromethylation method is compatible with a range of nitrogen-containing heteroarene substrates of varying complexity as well as select classes of conjugated π-systems and thiols. Regiochemical comparisons suggest that the CF2H radical generated from the new reagent possesses nucleophilic character.
More than 90% of clear cell renal cell carcinomas (ccRCC) exhibit inactivation of the von Hippel-Lindau (pVHL) tumor suppressor, establishing it as the major underlying cause of this malignancy. pVHL inactivation results in stabilization of the hypoxia-inducible transcription factors, HIF1a and HIF2a, leading to expression of a genetic program essential for the initiation and progression of ccRCC. Herein, we describe the potent, selective, and orally active small-molecule inhibitor PT2385 as a specific antagonist of HIF2a that allosterically blocks its dimerization with the
Cross-couplings
of alkyl halides and organometallic species based
on single electron transfer using Ni and Fe catalyst systems have
been studied extensively, and separately, for decades. Here we demonstrate
the first couplings of redox-active esters (both isolated and derived in situ from carboxylic acids) with organozinc and organomagnesium
species using an Fe-based catalyst system originally developed for
alkyl halides. This work is placed in context by showing a direct
comparison with a Ni catalyst for >40 examples spanning a range
of
primary, secondary, and tertiary substrates. This new C–C coupling
is scalable and sustainable, and it exhibits a number of clear advantages
in several cases over its Ni-based counterpart.
The hypoxia-inducible
factor 2α (HIF-2α) is a key oncogenic
driver in clear cell renal cell carcinoma (ccRCC). Our first HIF-2α
inhibitor PT2385 demonstrated promising proof of concept clinical
activity in heavily pretreated advanced ccRCC patients. However, PT2385
was restricted by variable and dose-limited pharmacokinetics resulting
from extensive metabolism of PT2385 to its glucuronide metabolite.
Herein we describe the discovery of second-generation HIF-2α
inhibitor PT2977 with increased potency and improved pharmacokinetic
profile achieved by reduction of phase 2 metabolism. Structural modification
by changing the geminal difluoro group in PT2385 to a vicinal difluoro
group resulted in enhanced potency, decreased lipophilicity, and significantly
improved pharmacokinetic properties. In a phase 1 dose-escalation
study, the clinical pharmacokinetics for PT2977 supports the hypothesis
that attenuating the rate of glucuronidation would improve exposure
and reduce variability in patients. Early evidence of clinical activity
shows promise for PT2977 in the treatment of ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.