Rheumatoid arthritis (RA) is a widely prevalent (1-3%) chronic systemic disease thought to have an autoimmune component; both humoral and cellular mechanisms have been implicated. Primary osteoarthritis (OA) is considered to be distinct from rheumatoid arthritis, and here damage is thought to be secondary to cartilage degeneration. In rheumatoid arthritis, immune complexes are present that consist exclusively of immunoglobulin, implying that this is both the 'antibody' (rheumatoid factor [RF]) and the 'antigen' (most commonly IgG). Autoantigenic reactivity has been localized to the constant-region (C gamma 2) domains of IgG. There is no evidence for a polypeptide determinant but carbohydrate changes have been reported. We have therefore conducted a study, simultaneously in Oxford and Tokyo, to compare in detail the N-glycosylation pattern of serum IgG (Fig. 1) isolated from normal individuals and from patients with either primary osteoarthritis or rheumatoid arthritis. The results, which required an evaluation of the primary sequences of approximately 1,400 oligosaccharides from 46 IgG samples, indicate that: (1) IgG isolated from normal individuals, patients with RA and patients with OA contains different distributions of asparagine-linked bi-antennary complex-type oligosaccharide structures, (2) in neither disease is the IgG associated with novel oligosaccharide structures, but the observed differences are due to changes in the relative extent of galactosylation compared with normal individuals. This change results in a 'shift' in the population of IgG molecules towards those carrying complex oligosaccharides, one or both of whose arms terminate in N-acetylglucosamine. These two arthritides may therefore be glycosylation diseases, reflecting changes in the intracellular processing, or post-secretory degradation of N-linked oligosaccharides.
Epigenetic alterations may provide important insights into gene-environment interaction in inflammatory bowel disease (IBD). Here we observe epigenome-wide DNA methylation differences in 240 newly-diagnosed IBD cases and 190 controls. These include 439 differentially methylated positions (DMPs) and 5 differentially methylated regions (DMRs), which we study in detail using whole genome bisulphite sequencing. We replicate the top DMP (RPS6KA2) and DMRs (VMP1, ITGB2 and TXK) in an independent cohort. Using paired genetic and epigenetic data, we delineate methylation quantitative trait loci; VMP1/microRNA-21 methylation associates with two polymorphisms in linkage disequilibrium with a known IBD susceptibility variant. Separated cell data shows that IBD-associated hypermethylation within the TXK promoter region negatively correlates with gene expression in whole-blood and CD8+ T cells, but not other cell types. Thus, site-specific DNA methylation changes in IBD relate to underlying genotype and associate with cell-specific alteration in gene expression.
N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a highthroughput manner. Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-highperformance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-offlight mass spectrometry (MALDI-TOF-MS) with linkagespecific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity. Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-gly-From the ‡Center for Proteomics and Metabolomics,
We performed high-throughput analysis to compare total plasma N-glycomes of individuals with vs without IBD and to identify patterns associated with disease features and the need for treatment. These profiles might be used in diagnosis and for predicting patients' responses to treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.