Propeller-like [Fe(4)(L)(2)(dk)(6)] complexes, in which Hdk is a β-diketone and H(3)L is a tripodal alcohol, R-C(CH(2)OH)(3), exhibit tunable magnetic anisotropy barriers and retain their magnetic memory effect when chemically anchored on metal surfaces. Heteronuclear analogues of these M(4) complexes have been sought to afford a library of compounds with different total spin (S) values, but synthetic efforts described so far gave solid solutions containing M(4) in addition to the desired M(3)M' species. We now present a novel synthetic route to M(3)M' complexes featuring a central chromium(III) ion. The three-step preparation goes through coordination of Cr(III) by two equivalents of tripodal alkoxide (R = Et and Ph), followed by reaction of this complex "core" with the peripheral +III metal ions. Products have been characterised by chemical analyses together with (1)H-NMR, FTIR, W-band EPR, DC/AC magnetic susceptibility measurements and single crystal X-ray diffractometry. Due to the chemical inertness of Cr(III), this route yields 100% pure Fe(3)Cr complexes without metal scrambling; what is more, it is suitable for designing novel heteronuclear single molecule magnets (SMMs) with a variety of d- and f-metals and R groups.
The selective replacement of the central iron(III) ion with vanadium(III) in a tetrairon(III) propeller-shaped single-molecule magnet has allowed us to increase the ground spin state from S=5 to S=13/2. As a consequence of the pronounced anisotropy of vanadium(III), the blocking temperature for the magnetization has doubled. Moreover, a significant remnant magnetization, practically absent in the parent homometallic molecule, has been achieved owing to the suppression of zero-field tunneling of the magnetization for the half-integer molecular spin. Interestingly, the contribution of vanadium(III) to the magnetic anisotropy barrier occurs through the anisotropic exchange interaction with iron(III) spins and not through single ion anisotropy as in most single-molecule magnets.
A series of 4-Se-(Te, S)-isochromenones and 3-substituted isochromenones were synthesized in good yields via FeCl(3)-mediated cyclization of alkynylaryl esters with different diorganyl dichalcogenides. This methodology was carried out at room temperature, using inexpensive and environmentally friendly iron salts as metallic source and under air atmosphere. The reaction showed to be tolerant to a range of substituents bonded into the aromatic ring of the diorganyl dichalcogenides as well as to alkyl groups directly bonded to the chalcogen atom. Alternatively, the cyclization reaction of 2-alkynylaryl esters with FeCl(3), in the absence of diorganyl dichalcogenide, gave the isochromenones without the chalcogen moiety in the structure. This approach proved to be highly regioselective, providing only six-membered ring products, once the possible five-membered products were not observed in any experiments.
The reversible thermochromic behaviour of homoleptic [{V(OR)(4)}(n)] complexes in solution [R = Pr(i) (product I), Bu(s) (B(s)), Nep (N) and Cy (C)] is accounted for the existence of an aggregation equilibrium involving dimeric and monomeric species in which vanadium(iv) is respectively five- and four-coordinate. Bulky R groups such as Bu(t) and Pe(t) (tert-pentoxide) prevent aggregation and therefore give rise to exclusively mononuclear compounds (B(t) and P(t), respectively) that are not thermochromic. The complexes and their temperature-dependent interconversion were characterised by single crystal X-ray diffractometry, magnetic susceptibility measurements and electronic, FTIR and EPR spectroscopies in a wide temperature range. Equilibrium constants and enthalpy and entropy changes for the dimerization reactions have been determined and compared with literature data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.