Sleep is an essential state of decreased activity and alertness but molecular factors regulating sleep duration remain unknown. Through genome-wide association analysis in 446,118 adults of European ancestry from the UK Biobank, we identify 78 loci for self-reported habitual sleep duration (
p
< 5 × 10
−8
; 43 loci at
p
< 6 × 10
−9
). Replication is observed for
PAX8
,
VRK2
, and
FBXL12/UBL5/PIN1
loci in the CHARGE study (
n
= 47,180;
p
< 6.3 × 10
−4
), and 55 signals show sign-concordant effects. The 78 loci further associate with accelerometer-derived sleep duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis (
n
= 85,499). Loci are enriched for pathways including striatum and subpallium development, mechanosensory response, dopamine binding, synaptic neurotransmission and plasticity, among others. Genetic correlation indicates shared links with anthropometric, cognitive, metabolic, and psychiatric traits and two-sample Mendelian randomization highlights a bidirectional causal link with schizophrenia. This work provides insights into the genetic basis for inter-individual variation in sleep duration implicating multiple biological pathways.
The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.
Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes, but underlying pathophysiological processes and causal relationships with disease are poorly understood. Here we identify 57 loci for self-reported insomnia symptoms in the UK Biobank (n=453,379) and confirm their impact on self-reported insomnia symptoms in the HUNT study (n=14,923 cases, 47,610 controls), physician diagnosed insomnia in Partners Biobank (n=2,217 cases, 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n=83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis, phototransduction and muscle development pathways and of genes expressed in multiple brain regions, skeletal muscle and adrenal gland. Evidence of shared genetic factors is found between frequent insomnia symptoms and restless legs syndrome, aging, cardio-metabolic, behavioral, psychiatric and reproductive traits. Evidence is found for a possible causal link between insomnia symptoms and coronary heart disease, depressive symptoms and subjective well-being. One Sentence Summary: We identify 57 genomic regions associated with insomnia pointing to the involvement of phototransduction and ubiquitination and potential causal links to CAD and depression.
The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-boxmediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock ''gated'' pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic Clock D19 mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.