Background Context Multiple biomaterials are clinically available to spine surgeons for performing interbody fusion. Poly-ether-ether-ketone (PEEK) is used frequently for lumbar spine interbody fusion, but alternative materials are also used, including titanium (Ti) alloys. Previously, we showed that osteoblasts exhibit a more differentiated phenotype when grown on machined or grit-blasted titanium aluminum vanadium (Ti6Al4V) alloys with micron-scale roughened surfaces than when grown on smoother Ti6Al4V surfaces or on tissue culture polystyrene (TCPS). We hypothesized that osteoblasts cultured on rough Ti alloy substrates would present a more mature osteoblast phenotype than cells cultured on PEEK, suggesting that textured Ti6Al4V implants may provide a more osteogenic surface for interbody fusion devices. Purpose The aim of the present study was to compare osteoblast response to smooth Ti6Al4V (sTiAlV) and roughened Ti6Al4V (rTiAlV) with their response to PEEK with respect to differentiation and production of factors associated with osteogenesis. Study Design This in vitro study compared the phenotype of human MG63 osteoblast-like cells cultured on PEEK, sTiAlV, or rTiAlV surfaces and their production of bone morphogenetic proteins (BMPs). Methods Surface properties of PEEK, sTiAlV, and rTiAlV discs were determined. Human MG63 cells were grown on TCPS and the discs. Confluent cultures were harvested, and cell number, alkaline phosphatase–specific activity, and osteocalcin were measured as indicators of osteoblast maturation. Expression of messenger RNA (mRNA) for BMP2 and BMP4 was measured by real-time polymerase chain reaction. Levels of BMP2, BMP4, and BMP7 proteins were also measured in the conditioned media of the cell cultures. Results Although roughness measurements for sTiAlV (Sa=0.09±0.01), PEEK (Sa=0.43±0.07), and rTiAlV (Sa= 1.81±0.51) varied, substrates had similar contact angles, indicating comparable wettability. Cell morphology differed depending on the surface. Cells cultured on Ti6Al4V had lower cell number and increased alkaline phosphatase specific activity, osteocalcin, BMP2, BMP4, and BMP7 levels in comparison to PEEK. In particular, roughness significantly increased the mRNA levels of BMP2 and BMP4 and secreted levels of BMP4. Conclusions These data demonstrate that rTiAlV substrates increase osteoblast maturation and produce an osteogenic environment that contains BMP2, BMP4, and BMP7. The results show that modifying surface structure is sufficient to create an osteogenic environment without addition of exogenous factors, which may induce better and faster bone during interbody fusion.
Peri-implant bone formation depends on the ability of mesenchymal cells to colonize the implant surface and differentiate into osteoblasts. Human mesenchymal stem cells (HMSCs) undergo osteoblastic differentiation on microstructured titanium (Ti) surfaces in the absence of exogenous factors, but the mechanisms are unknown. Wnt proteins are associated with an osteoblast phenotype, but how Wnt signaling regulates HMSC differentiation on microstructured Ti surfaces is not known. HMSCs were cultured on tissue culture polystyrene or Ti (PT [Sa=0.33μm, θ=96°], SLA [Sa=2.5μm, θ=132°], modSLA [hydrophilic-SLA]). Expression of calcium-dependent Wnt ligand WNT5A increased and canonical Wnt pathway ligands decreased on microstructured Ti in a time-dependent manner. Treatment of HMSCs with canonical ligand Wnt3a preserved the mesenchymal phenotype on smooth surfaces. Treatment with Wnt5a increased osteoblastic differentiation. Expression of integrins ITGA1, ITGA2, and ITGAV increased over time and correlated with increased WNT5A expression. Treatment of HMSCs with Wnt5a, but not Wnt3a, increased integrin expression. Regulation of integrin expression due to surface roughness and energy was ablated in WNT5A-knockdown HMSCs. This indicates that surface properties regulate stem cell fate and induce osteoblast differentiation via the Wnt calcium-dependent pathway. Wnt5a enhances osteogenesis through a positive feedback with integrins and local factor regulation, particularly though BMP signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.