Markers of inhibitory neurotransmission are altered in the prefrontal cortex (PFC) of subjects with schizophrenia, and several lines of evidence suggest that these alterations may be most prominent in the subset of GABA-containing neurons that express the calcium-binding protein, parvalbumin (PV). To test this hypothesis, we evaluated the expression of mRNAs for PV, another calcium-binding protein, calretinin (CR), and glutamic acid decarboxylase (GAD67) in postmortem brain specimens from 15 pairs of subjects with schizophrenia and matched control subjects using single- and dual-label in situ hybridization. Signal intensity for PV mRNA expression in PFC area 9 was significantly decreased in the subjects with schizophrenia, predominantly in layers III and IV. Analysis at the cellular level revealed that this decrease was attributable principally to a reduction in PV mRNA expression per neuron rather than by a decreased density of PV mRNA-positive neurons. In contrast, the same measures of CR mRNA expression were not altered in schizophrenia. These findings were confirmed by findings from cDNA microarray studies using different probes. Across the subjects with schizophrenia, the decrease in neuronal PV mRNA expression was highly associated (r = 0.84) with the decrease in the density of neurons containing detectable levels of GAD67 mRNA. Furthermore, simultaneous detection of PV and GAD67 mRNAs revealed that in subjects with schizophrenia only 55% of PV mRNA-positive neurons had detectable levels of GAD67 mRNA. Given the critical role that PV-containing GABA neurons appear to play in regulating the cognitive functions mediated by the PFC, the selective alterations in gene expression in these neurons may contribute to the cognitive deficits characteristic of schizophrenia.
73Over 100 genetic loci harbor schizophrenia associated variants, yet how these common 74 variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral 75 prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating 76 the largest publicly available resource to date of gene expression and its genetic regulation; ~5 77 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the 78 schizophrenia risk loci have common variants that could explain regulation of brain gene 79 expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, 80 CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, 81 TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and 82 leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of 83 FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces 84 abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential 85 expression between cases and controls, 44% show some evidence for differential expression. 86All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for 87 these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly 88 polygenic, as has been reported in investigations of common and rare genetic variation. Co-89 expression analyses identify a gene module that shows enrichment for genetic associations and 90 is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic 91 interpretations of genetic liability for schizophrenia and other brain diseases. 4The human brain is complicated and not well understood. Seemingly straightforward 93 fundamental information such as which genes are expressed therein and what functions they 94 perform are only partially characterized. To overcome these obstacles, we established the 95 CommonMind Consortium (CMC; www.synpase.org/CMC), a public-private partnership to 96 generate functional genomic data in brain samples obtained from autopsies of cases with and 97 without severe psychiatric disorders. The CMC is the largest existing collection of collaborating 98 brain banks and includes over 1,150 samples. A wide spectrum of data is being generated on 99 these samples including regional gene expression, epigenomics (cell-type specific histone 100 modifications and open chromatin), whole genome sequencing, and somatic mosaicism. 101 102 Schizophrenia (SCZ), affecting roughly 0.7% of adults, is a severe psychiatric disorder 103 characterized by abnormalities in thought and cognition (1). Despite a century of evidence 104 establishing its genetic basis, only recently have specific genetic risk factors been conclusively 105identified, including rare copy number variants (2) and >100 common variants (3). However, 106 there is not a one-to-one Mendelian mapping between these SCZ ris...
Chlamydia trachomatis is responsible for both trachoma and sexually transmitted infections causing substantial morbidity and economic cost globally. Despite this, our knowledge of its population and evolutionary genetics is limited. Here we present a detailed whole genome phylogeny from representative strains of both trachoma and lymphogranuloma venereum (LGV) biovars from temporally and geographically diverse sources. Our analysis demonstrates that predicting phylogenetic structure using the ompA gene, traditionally used to classify Chlamydia, is misleading because extensive recombination in this region masks true relationships. We show that in many instances ompA is a chimera that can be exchanged in part or whole, both within and between biovars. We also provide evidence for exchange of, and recombination within, the cryptic plasmid, another important diagnostic target. We have used our phylogenetic framework to show how genetic exchange has manifested itself in ocular, urogenital and LGV C. trachomatis strains, including the epidemic LGV serotype L2b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.