Due to the spread of resistance, antibiotic exposure receives increasing attention. Ecological consequences for the different niches of individual microbiomes are, however, largely ignored. Here, we report the effects of widely used antibiotics (clindamycin, ciprofloxacin, amoxicillin, and minocycline) with different modes of action on the ecology of both the gut and the oral microbiomes in 66 healthy adults from the United Kingdom and Sweden in a two-center randomized placebo-controlled clinical trial. Feces and saliva were collected at baseline, immediately after exposure, and 1, 2, 4, and 12 months after administration of antibiotics or placebo. Sequences of 16S rRNA gene amplicons from all samples and metagenomic shotgun sequences from selected baseline and post-antibiotic-treatment sample pairs were analyzed. Additionally, metagenomic predictions based on 16S rRNA gene amplicon data were performed using PICRUSt. The salivary microbiome was found to be significantly more robust, whereas the antibiotics negatively affected the fecal microbiome: in particular, health-associated butyrate-producing species became strongly underrepresented. Additionally, exposure to different antibiotics enriched genes associated with antibiotic resistance. In conclusion, healthy individuals, exposed to a single antibiotic treatment, undergo considerable microbial shifts and enrichment in antibiotic resistance in their feces, while their salivary microbiome composition remains unexpectedly stable. The health-related consequences for the gut microbiome should increase the awareness of the individual risks involved with antibiotic use, especially in a (diseased) population with an already dysregulated microbiome. On the other hand, understanding the mechanisms behind the resilience of the oral microbiome toward ecological collapse might prove useful in combating microbial dysbiosis elsewhere in the body.
This study aimed to investigate and compare the efficacy of selected root canal irrigants and a medicament on a clinical isolate of Enterococcus faecalis grown as biofilm or planktonic suspension phenotype. A cell-dense pellet "presentation" prepared from planktonic phenotype was also tested. Each bacterial presentation was exposed to calcium hydroxide (pH 12.3), 0.2% chlorhexidine gluconate, 17% ethylene-diamine-tetra-acetic acid, 10% povidone iodine, or 3.0% sodium hypochlorite (NaOCl) for a range of time periods (1, 2, 4, 8, 15, 30, and 60 min). Phosphate buffered saline was used as a control agent. The difference in gradients of bacterial killing among the biofilm, planktonic suspension or pellet presentation was significant (p < 0.05) and dependent upon the test agent except in the case of NaOCl and calcium hydroxide where no difference could be detected. NaOCl was the most effective agent and achieved 100% kills for all presentations of E. faecalis after a 2 min contact time.
In order to characterize the bacterial microbiota present within oral cancerous lesions, tumorous and non-tumorous mucosal tissue specimens (approx. 1 cm 3 ) were harvested from ten oral squamous cell carcinoma (OSCC) patients at the time of surgery. Any microbial contamination on the surface of the specimens was eliminated by immersion in Betadine and washing with PBS. Bacteria were visualized within sections of the OSCC by performing fluorescent in situ hybridization with the universal oligonucleotide probe, EUB338. DNA was extracted from each aseptically macerated tissue specimen using a commercial kit. This was then used as template for PCR with three sets of primers, targeting the 16S rRNA genes of Spirochaetes, Bacteroidetes and the domain Bacteria. PCR products were differentiated by TA cloning and bacterial species were identified by partial sequencing of the 16S rRNA gene fragments. A total of 70 distinct taxa was detected: 52 different phylotypes isolated from the tumorous tissues, and 37 taxa from within the non-tumorous specimens. Differences between the composition of the microbiotas within the tumorous and non-tumorous mucosae were apparent, possibly indicating selective growth of bacteria within carcinoma tissue. Most taxa isolated from within the tumour tissue represented saccharolytic and aciduric species. Whether the presence of these bacteria within the mucosa has any bearing on the carcinogenic process is a concept worthy of further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.