Background:
Facial transplantation introduced a paradigm shift in the reconstruction of extensive facial defects. Although the feasibility of the procedure is well established, new challenges face the field in its second decade.
Methods:
The authors’ team has successfully treated patients with extensive thermal and ballistic facial injuries with allotransplantation. The authors further validate facial transplantation as a reconstructive solution for irreparable facial injuries. Following informed consent and institutional review board approval, a partial face and double jaw transplantation was performed in a 25-year-old man who sustained ballistic facial trauma. Extensive team preparations, thorough patient evaluation, preoperative diagnostic imaging, three-dimensional printing technology, intraoperative surgical navigation, and the use of dual induction immunosuppression contributed to the success of the procedure.
Results:
The procedure was performed on January 5 and 6, 2018, and lasted nearly 25 hours. The patient underwent hyoid and genioglossus advancement for floor-of-mouth dehiscence, and palate wound dehiscence repair on postoperative day 11. Open reduction and internal fixation of left mandibular nonunion were performed on postoperative day 108. Nearly 1 year postoperatively, the patient demonstrates excellent aesthetic outcomes, intelligible speech, and is tolerating an oral diet. He remains free from acute rejection.
Conclusions:
The authors validate facial transplantation as the modern answer to the classic reconstructive challenge imposed by extensive facial defects resulting from ballistic injury. Relying on a multidisciplinary collaborative approach, coupled with innovative emerging technologies and immunosuppression protocols, can overcome significant challenges in facial transplantation and reinforce its position as the highest rung on the reconstructive ladder.
CLINICAL QUESTION/LEVEL OF EVIDENCE:
Therapeutic, V.
Craniofacial microsomia (CFM) is the second most common congenital facial anomaly, yet its genetic etiology remains unknown. We perform whole-exome or genome sequencing of 146 kindreds with sporadic (n = 138) or familial (n = 8) CFM, identifying a highly significant burden of loss of function variants in SF3B2 (P = 3.8 × 10−10), a component of the U2 small nuclear ribonucleoprotein complex, in probands. We describe twenty individuals from seven kindreds harboring de novo or transmitted haploinsufficient variants in SF3B2. Probands display mandibular hypoplasia, microtia, facial and preauricular tags, epibulbar dermoids, lateral oral clefts in addition to skeletal and cardiac abnormalities. Targeted morpholino knockdown of SF3B2 in Xenopus results in disruption of cranial neural crest precursor formation and subsequent craniofacial cartilage defects, supporting a link between spliceosome mutations and impaired neural crest development in congenital craniofacial disease. The results establish haploinsufficient variants in SF3B2 as the most prevalent genetic cause of CFM, explaining ~3% of sporadic and ~25% of familial cases.
Three-dimensional analysis of UCL±P patients demonstrated significant improvements in nasal projection, columella length, nasal symmetry, and nasal width. Compared to noncleft controls, nasal form was generally corrected, with overcorrection of nasal tip projection, columella angle, and outer nasal widths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.