Pancreatic ductal adenocarcinoma (PDA) is among the most lethal human cancers, in part because it is insensitive to many chemotherapeutic drugs. Studying a mouse model of PDA that is refractory to the clinically used drug gemcitabine, we found that the tumors in this model were poorly perfused and poorly vascularized, properties that are shared with human PDA. We tested whether the delivery and efficacy of gemcitabine in the mice could be improved by coadministration of IPI-926, a drug that depletes tumor-associated stromal tissue by inhibiting the † To whom correspondence should be addressed. david.tuveson@cancer.org.uk.
To define the genetic requirements for pancreatic ductal adenocarcinoma (PDA), we have targeted concomitant endogenous expression of Trp53(R172H) and Kras(G12D) to the mouse pancreas, revealing the cooperative development of invasive and widely metastatic carcinoma that recapitulates the human disease. The primary carcinomas and metastases demonstrate a high degree of genomic instability manifested by nonreciprocal translocations without obvious telomere erosion-hallmarks of human carcinomas not typically observed in mice. No mutations were discovered in other cardinal tumor suppressor gene pathways, which, together with previous results, suggests that there are distinct genetic pathways to PDA with different biological behaviors. These findings have clear implications for understanding mechanisms of disease pathogenesis, and for the development of detection and targeted treatment strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.