Hypoxia on FMISO-PET imaging, in patients receiving a nontirapazamine-containing chemoradiotherapy regimen, is associated with a high risk of LRF. Our data provide the first clinical evidence to support the experimental observation that tirapazamine acts by specifically targeting hypoxic tumor cells.
One of the pathological hallmarks of Alzheimer's disease is the presence of amyloid-β plaques in the brain and the major constituent of these plaques is aggregated amyloid-β peptide. New thiosemicarbazone-pyridylhydrazine based ligands that incorporate functional groups designed to bind amyloid-β plaques have been synthesized. The new ligands form stable four coordinate complexes with a positron-emitting radioactive isotope of copper, (64)Cu. Two of the new Cu(II) complexes include a functionalized styrylpyridine group and these complexes bind to amyloid-β plaques in samples of post-mortem human brain tissue. Strategies to increase brain uptake by functional group manipulation have led to a (64)Cu complex that effectively crosses the blood-brain barrier in wild-type mice. The new complexes described in this manuscript provide insight into strategies to deliver metal complexes to amyloid-β plaques.
FDG PET scanning changed or influenced management decisions in 70 patients (67%) with NSCLC. Patients were frequently spared unnecessary treatment, and management was more appropriately targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.