Background-Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes. Methods and Results-We measured levels of serum cytokines (tumor necrosis factor-␣, interferon-␥ and interleukin-1, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (nϭ60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (nϭ21). PAH patients had significantly higher levels of interleukin-1, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-␣ compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of Ͼ9 pg/mL was 30% compared with 63% for patients with levels Յ9 pg/mL (Pϭ0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics. Conclusions-This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH. (Circulation. 2010;122:920-927.)
The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.
Mutations in bone morphogenetic protein receptor II (BMPR-II) underlie most heritable cases of pulmonary arterial hypertension (PAH). However, less than half the individuals who harbor mutations develop the disease. Interestingly, heterozygous null BMPR-II mice fail to develop PAH unless an additional inflammatory insult is applied, suggesting that BMPR-II plays a fundamental role in dampening inflammatory signals in the pulmonary vasculature. Using static-and flow-based in vitro systems, we demonstrate that BMPR-II maintains the barrier function of the pulmonary artery endothelial monolayer suppressing leukocyte transmigration. Similar findings were also observed in vivo using a murine model with loss of endothelial BMPR-II expression. In vitro, the enhanced transmigration of leukocytes after tumor necrosis factor ␣ or transforming growth factor 1 stimulation was CXCR2 dependent. Our data define how loss of BMPR-II in the endothelial layer of the pulmonary vasculature could lead to a heightened susceptibility to inflammation by promoting the extravasation of leukocytes into the pulmonary artery wall. We speculate that this may be a key mechanism involved in the initiation of the disease in heritable PAH that results from defects in BMPR-II expression. (Blood. 2011;117(1):333-341)
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of high unmet medical need. Although bromodomain (Brd) and extra terminal domain isoforms have recently been implicated in mediating inflammatory and oncologic indications, their roles in lung fibrosis have not been comprehensively assessed. We investigated the role of Brd on the profibrotic responses of lung fibroblasts (LFs) in patients with rapidly progressing IPF and a mouse bleomycin model of lung fibrosis. The enhanced migration, proliferation, and IL-6 release observed in LFs from patients with rapidly progressing IPF are attenuated by pharmacologic inhibition of Brd4. These changes are accompanied by enhanced histone H4 lysine5 acetylation and association of Brd4 with genes involved in the profibrotic responses in IPF LFs as demonstrated using chromatin immunoprecipitation and quantitative PCR. Oral administration of 200 mg/kg per day Brd4 inhibitor JQ1 in a therapeutic dosing regimen substantially attenuated lung fibrosis induced by bleomycin in C57BL/6 mice. In conclusion, this study shows that the Brd4 inhibitor JQ1, administered in a therapeutic dosage, is capable of inhibiting the profibrotic effects of IPF LFs and attenuates bleomycin-induced lung fibrosis in mice. These results suggest that Brd4 inhibitors may represent a novel therapy for the treatment of rapidly progressing IPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.