SummaryWhile several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.
Background During the COVID-19 lockdown, referrals via the 2-week-wait urgent pathway for suspected cancer in England, UK, are reported to have decreased by up to 84%. We aimed to examine the impact of different scenarios of lockdown-accumulated backlog in cancer referrals on cancer survival, and the impact on survival per referred patient due to delayed referral versus risk of death from nosocomial infection with severe acute respiratory syndrome coronavirus 2. Methods In this modelling study, we used age-stratified and stage-stratified 10-year cancer survival estimates for patients in England, UK, for 20 common tumour types diagnosed in 2008–17 at age 30 years and older from Public Health England. We also used data for cancer diagnoses made via the 2-week-wait referral pathway in 2013–16 from the Cancer Waiting Times system from NHS Digital. We applied per-day hazard ratios (HRs) for cancer progression that we generated from observational studies of delay to treatment. We quantified the annual numbers of cancers at stage I–III diagnosed via the 2-week-wait pathway using 2-week-wait age-specific and stage-specific breakdowns. From these numbers, we estimated the aggregate number of lives and life-years lost in England for per-patient delays of 1–6 months in presentation, diagnosis, or cancer treatment, or a combination of these. We assessed three scenarios of a 3-month period of lockdown during which 25%, 50%, and 75% of the normal monthly volumes of symptomatic patients delayed their presentation until after lockdown. Using referral-to-diagnosis conversion rates and COVID-19 case-fatality rates, we also estimated the survival increment per patient referred. Findings Across England in 2013–16, an average of 6281 patients with stage I–III cancer were diagnosed via the 2-week-wait pathway per month, of whom 1691 (27%) would be predicted to die within 10 years from their disease. Delays in presentation via the 2-week-wait pathway over a 3-month lockdown period (with an average presentational delay of 2 months per patient) would result in 181 additional lives and 3316 life-years lost as a result of a backlog of referrals of 25%, 361 additional lives and 6632 life-years lost for a 50% backlog of referrals, and 542 additional lives and 9948 life-years lost for a 75% backlog in referrals. Compared with all diagnostics for the backlog being done in month 1 after lockdown, additional capacity across months 1–3 would result in 90 additional lives and 1662 live-years lost due to diagnostic delays for the 25% backlog scenario, 183 additional lives and 3362 life-years lost under the 50% backlog scenario, and 276 additional lives and 5075 life-years lost under the 75% backlog scenario. However, a delay in additional diagnostic capacity with provision spread across months 3–8 after lockdown would result in 401 additional lives and 7332 life-years lost due to diagnostic delays under the 25% backlog scenario, 811 additional lives and 14 873 life-years l...
The incremental value of polygenic risk scores in addition to well-established risk prediction models for coronary artery disease (CAD) is uncertain.OBJECTIVE To examine whether a polygenic risk score for CAD improves risk prediction beyond pooled cohort equations. DESIGN, SETTING, AND PARTICIPANTSObservational study of UK Biobank participants enrolled from 2006 to 2010. A case-control sample of 15 947 prevalent CAD cases and equal number of age and sex frequency-matched controls was used to optimize the predictive performance of a polygenic risk score for CAD based on summary statistics from published genome-wide association studies. A separate cohort of 352 660 individuals (with follow-up to 2017) was used to evaluate the predictive accuracy of the polygenic risk score, pooled cohort equations, and both combined for incident CAD.EXPOSURES Polygenic risk score for CAD, pooled cohort equations, and both combined.MAIN OUTCOMES AND MEASURES CAD (myocardial infarction and its related sequelae). Discrimination, calibration, and reclassification using a risk threshold of 7.5% were assessed. RESULTSIn the cohort of 352 660 participants (mean age, 55.9 years; 205 297 women [58.2%]) used to evaluate the predictive accuracy of the examined models, there were 6272 incident CAD events over a median of 8 years of follow-up. CAD discrimination for polygenic risk score, pooled cohort equations, and both combined resulted in C statistics of 0.61 (95% CI, 0.60 to 0.62), 0.76 (95% CI, 0.75 to 0.77), and 0.78 (95% CI, 0.77 to 0.79), respectively. The change in C statistic between the latter 2 models was 0.02 (95% CI, 0.01 to 0.03). Calibration of the models showed overestimation of risk by pooled cohort equations, which was corrected after recalibration. Using a risk threshold of 7.5%, addition of the polygenic risk score to pooled cohort equations resulted in a net reclassification improvement of 4.4% (95% CI, 3.5% to 5.3%) for cases and −0.4% (95% CI, −0.5% to −0.4%) for noncases (overall net reclassification improvement, 4.0% [95% CI, 3.1% to 4.9%]). CONCLUSIONS AND RELEVANCEThe addition of a polygenic risk score for CAD to pooled cohort equations was associated with a statistically significant, yet modest, improvement in the predictive accuracy for incident CAD and improved risk stratification for only a small proportion of individuals. The use of genetic information over the pooled cohort equations model warrants further investigation before clinical implementation.
Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40–69 years in Europe. Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65–0.68) to 0.81 (0.76–0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusion SCORE2—a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations—enhances the identification of individuals at higher risk of developing CVD across Europe.
IMPORTANCE Soft drinks are frequently consumed, but whether this consumption is associated with mortality risk is unknown and has been understudied in European populations to date. OBJECTIVE To examine the association between total, sugar-sweetened, and artificially sweetened soft drink consumption and subsequent total and cause-specific mortality. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study involved participants (n = 451 743 of the full cohort) in the European Prospective Investigation into Cancer and Nutrition (EPIC), an ongoing, large multinational cohort of people from 10 European countries (Denmark,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.