Recent technological advances in the Power Generation and Information Technologies areas are helping to change the modern electricity supply system, in order to comply with higher energy efficiency and sustainability standards. Smart Grids are an emerging trend which introduces intelligence in the power grid to optimize resource usage. In order for this intelligence to be effective, it is necessary to retrieve enough information about the grid operation together with other context data such as environmental variables and intelligently modify the behaviour of the network elements accordingly. This paper presents a Multi-Agent System model for Virtual Power Plants, a new power plant concept in which generation no longer occurs in big installations, but is the result of the cooperation of smaller and more intelligent elements. The proposed model is not only focused on the management of the different elements, but includes a set of agents which are embedded with Artificial Neural Networks for collaborative forecasting of disaggregated energy demand of domestic end users, the results of which are also shown in this paper.
One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.