The development of new bio-orthogonal ligation methods for the conjugation of native proteins is of particular importance in the field of chemical biology and biotherapies. In this work, we developed a traceless electrochemical method for protein bioconjugation. The electrochemically promoted tyrosine-click (e-Y-CLICK) allowed the chemoselective Y-modification of peptides and proteins with labeled urazoles. A low potential is applied in an electrochemical cell to activate urazole anchors in situ and on demand, without affecting the electroactive amino acids from the protein. The versatility of the electrosynthetic approach was shown on biologically relevant peptides and proteins such as oxytocin, angiotensin 2, serum bovine albumin, and epratuzumab. The fully conserved enzymatic activity of a glucose oxidase observed after e-Y-CLICK further highlights the softness of the method. The e-Y-CLICK protocols were successfully performed in pure aqueous buffers, without the need for co-solvents, scavenger or oxidizing chemicals, and should therefore significantly broaden the scope of bioconjugation.
Adherent-invasive Escherichia coli (AIEC) have previously been shown to induce gut inflammation in patients with Crohn's disease (CD). We developed a set of mannosides to prevent AIEC attachment to the gut by blocking the FimH bacterial adhesin. The crystal structure of the FimH lectin domain in complex with a lead thiazolylaminomannoside highlighted the preferential position for pharmacomodulations. A small library of analogues showing nanomolar affinity for FimH was then developed. Notably, AIEC attachment to intestinal cells was efficiently prevented by the most active compound and at around 10000-fold and 100-fold lower concentrations than mannose and the potent FimH inhibitor heptylmannoside, respectively. An ex vivo assay performed on the colonic tissue of a transgenic mouse model of CD confirmed this antiadhesive potential. Given the key role of AIEC in the chronic intestinal inflammation of CD patients, these results suggest a potential antiadhesive treatment with the FimH inhibitors developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.