Burkholderia pseudomallei is a recognized biothreat agent and the causative agent of melioidosis. This Gram-negative bacterium exists as a soil saprophyte in melioidosis-endemic areas of the world and accounts for 20% of community-acquired septicaemias in northeastern Thailand where half of those affected die. Here we report the complete genome of B. pseudomallei, which is composed of two chromosomes of 4.07 megabase pairs and 3.17 megabase pairs, showing significant functional partitioning of genes between them. The large chromosome encodes many of the core functions associated with central metabolism and cell growth, whereas the small chromosome carries more accessory functions associated with adaptation and survival in different niches. Genomic comparisons with closely and more distantly related bacteria revealed a greater level of gene order conservation and a greater number of orthologous genes on the large chromosome, suggesting that the two replicons have distinct evolutionary origins. A striking feature of the genome was the presence of 16 genomic islands (GIs) that together made up 6.1% of the genome. Further analysis revealed these islands to be variably present in a collection of invasive and soil isolates but entirely absent from the clonally related organism B. mallei. We propose that variable horizontal gene acquisition by B. pseudomallei is an important feature of recent genetic evolution and that this has resulted in a genetically diverse pathogenic species.
SummaryBurkholderia mallei is a host-adapted pathogen and a category B biothreat agent. Although the B. mallei VirAG two-component regulatory system is required for virulence in hamsters, the virulence genes it regulates are unknown. Here we show with expression profiling that overexpression of virAG resulted in transcriptional activation of~60 genes, including some involved in capsule production, actin-based intracellular motility, and type VI secretion (T6S). The 15 genes encoding the major sugar component of the homopolymeric capsule were up-expressed >2.5-fold, but capsule was still produced in the absence of virAG. Actin tail formation required virAG as well as bimB, bimC and bimE, three previously uncharacterized genes that were activated four-to 15-fold when VirAG was overproduced. Surprisingly, actin polymerization was found to be dispensable for virulence in hamsters. In contrast, genes encoding a T6S system were up-expressed as much as 30-fold and mutations in this T6S gene cluster resulted in strains that were avirulent in hamsters. SDS-PAGE and mass spectrometry demonstrated that BMAA0742 was secreted by the T6S system when virAG was overexpressed. Purified His-tagged BMAA0742 was recognized by glanders antiserum from a horse, a human and mice, indicating that this Hcp-family protein is produced in vivo during infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.