We present large scale facial model (LSFM)-a 3D Morphable Model (3DMM) automatically constructed from 9663 distinct facial identities. To the best of our knowledge LSFM is the largest-scale Morphable Model ever constructed, containing statistical information from a huge variety of the human population. To build such a large model we introduce a novel fully automated and robust Morphable Model construction pipeline, informed by an evaluation of state-of-the-art dense correspondence techniques. The dataset that LSFM is trained on includes rich demographic information about each subject, allowing for the construction of not only a global 3DMM model but also models tailored for specific age, gender or ethnicity groups. We utilize the proposed model to perform age classification from 3D shape alone and to reconstruct noisy out-of-sample data in the low-dimensional model space. Furthermore, we perform a systematic analysis of the constructed 3DMM models that showcases their quality and descriptive power. reveal that the proposed 3DMM achieves state-of-the-art results, outperforming existing models by a large margin. Finally, for the benefit of the research community, we make publicly available the source code of the proposed automatic 3DMM construction pipeline, as well as the constructed global 3DMM and a variety of bespoke models tailored by age, gender and ethnicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.