The honey bee, Apis mellifera L., is the world’s most important managed pollinator of agricultural crops, however, Varroa mite, Varroa destructor Anderson and Trueman, infestation has threatened honey bee survivorship. Low efficacy and development of Varroa mite resistance to currently used Varroacides has increased the demand for innovative, effective treatment tool options that exhibit high efficacy, while minimizing adverse effects on honey bee fitness. In this investigation, the toxicity of 16 active ingredients and 9 formulated products of registered miticides for use on crops from 12 chemical families were evaluated in comparison to amitraz on Varroa mites and honey bees using contact surface and topical exposures. It was found that fenpyroximate (93% mortality), spirotetramat (84% mortality) and spirodiclofen (70% mortality) had greater toxicity to Varroa mites, but high dose rates caused high bee mortality (> 60%). With this in mind, further research is needed to investigate other options to minimize the adverse effect of these compounds on bees. The results also found high toxicity of fenazaquin and etoxazole against Varroa mites causing 92% and 69% mortality, respectively; and were found to be safe on honey bees. Collectively, it is recommended that fenazaquin and etoxazole are candidates for a potential Varroacide and recommended for further testing against Varroa mites at the colony level.
Clubroot resistance derived from the oilseed rape/canola Brassica napus ‘Mendel’ has been overcome in some fields in Alberta, Canada, by the emergence of ‘new’ strains of the protist Plasmodiophora brassicae. Resistance to the pathogen was assessed in 112 doubled haploid (DH) lines, derived from B. rapa subsp. rapifera (European clubroot differential (ECD) 04). The lines were evaluated against five single‐spore isolates representing the ‘old’ pathotypes 2, 3, 5, 6 and 8, and 15 field populations representing new strains of P. brassicae. The disease severity index (ID%) data revealed that none of the DH lines were resistant or moderately resistant to the new pathotype 5X (field populations L‐G1, L‐G2, L‐G3) and D‐G3, while 3–42% were resistant or moderately resistant to the other 11 new strains. Using the mean ID induced by the old pathotype 3 (approx. 13.5%) as the baseline, clubroot severity increased by 300–600% when inoculated with the new pathotypes. A significant finding of this study was the fact that ECD 04 showed absolute resistance to all of the old and new P. brassicae strains while the B. napus ‘Mendel’, although resistant to all of the old pathotypes, was resistant to only about 50% of the new strains. Similarly, all of the selected clubroot‐resistant commercial canola cultivars evaluated in this study were susceptible to 87% of the new P. brassicae strains. The molecular data revealed that the breakdown of clubroot resistance in Mendel and the canola cultivars was in part due to the non‐inheritance of the Crr1 gene on the A08 chromosome from ECD 04.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.