Li-ion cell designs, component integrity, and manufacturing processes all have critical influence on the safety of Li-ion batteries. Any internal defective features that induce a short circuit, can trigger a thermal runaway: a cascade of reactions, leading to a device fire. As consumer device manufacturers push aggressively for increased battery energy, instances of field failure are increasingly reported. Notably, Samsung made a press release in 2017 following a total product recall of their Galaxy Note 7 mobile phone, confirming speculation that the events were attributable to the battery and its mode of manufacture. Recent incidences of battery swelling on the new iPhone 8 have been reported in the media, and the techniques and lessons reported herein may have future relevance. Here we look deeper into the key components of one of these cells and confirm evidence of cracking of electrode material in tightly folded areas, combined with a delamination of surface coating on the separator, which itself is an unusually thin monolayer. We report microstructural information about the electrodes, battery welding attributes, and thermal mapping of the battery whilst operational. The findings present a deeper insight into the battery's component microstructures than previously disseminated. This points to the most probable combination of events and highlights the impact of design features, whilst providing structural considerations most likely to have led to the reported incidences relating to this phone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.