Kit (QIAGEN) per the manufacturer's instructions, with overnight tissue digestion. This method generated 155-3730 ng DNA per sample.HTS analyses: immunosequencing. For each sample, DNA was extracted from skin biopsies, then TCRβ CDR3, TCRγ CDR3, TCRα CDR3, and TCRδ CDR3 regions were amplified and sequenced using immunoSEQ (Adaptive Biotechnologies). Bias-controlled V and J gene matitis, allergic contact dermatitis, and pityriasis lichenoides were obtained with IRB approval from the Pathology Specimen Locator Core at Brigham and Women's Hospital.DNA isolation from skin. DNA was isolated from frozen, OCTembedded skin samples. 30 Cryosections of 10-μm thickness were cut, and DNA extraction was carried out using the QIAamp DNA Mini
The recognition of cancer cells by T cells can impact upon prognosis and be exploited for immunotherapeutic approaches. This recognition depends on the specific interaction between antigens displayed on the surface of cancer cells and the T cell receptor (TCR), which is generated by somatic rearrangements of TCR α- and β-chains (TCRb). Our aim was to assess whether ultra-deep sequencing of the rearranged TCRb in DNA extracted from unfractionated clear cell renal cell carcinoma (ccRCC) samples can provide insights into the clonality and heterogeneity of intratumoural T cells in ccRCCs, a tumour type that can display extensive genetic intratumour heterogeneity (ITH). For this purpose, DNA was extracted from two to four tumour regions from each of four primary ccRCCs and was analysed by ultra-deep TCR sequencing. In parallel, tumour infiltration by CD4, CD8 and Foxp3 regulatory T cells was evaluated by immunohistochemistry and correlated with TCR-sequencing data. A polyclonal T cell repertoire with 367–16 289 (median 2394) unique TCRb sequences was identified per tumour region. The frequencies of the 100 most abundant T cell clones/tumour were poorly correlated between most regions (Pearson correlation coefficient, –0.218 to 0.465). 3–93% of these T cell clones were not detectable across all regions. Thus, the clonal composition of T cell populations can be heterogeneous across different regions of the same ccRCC. T cell ITH was higher in tumours pretreated with an mTOR inhibitor, which could suggest that therapy can influence adaptive tumour immunity. These data show that ultra-deep TCR-sequencing technology can be applied directly to DNA extracted from unfractionated tumour samples, allowing novel insights into the clonality of T cell populations in cancers. These were polyclonal and displayed ITH in ccRCC. TCRb sequencing may shed light on mechanisms of cancer immunity and the efficacy of immunotherapy approaches. Copyright © 2013 Pathological Society of Great Britain and Ireland.
Purpose: To investigate the relationship between the intratumoral T-cell receptor (TCR) repertoire and the tumor microenvironment (TME) in de novo diffuse large B-cell lymphoma (DLBCL) and the impact of TCR on survival.Experimental Design: We performed high-throughput unbiased TCRb sequencing on a population-based cohort of 92 patients with DLBCL treated with conventional (i.e., non-checkpoint blockade) frontline "R-CHOP" therapy. Key immune checkpoint genes within the TME were digitally quantified by nanoString. The primary endpoints were 4-year overall survival (OS) and progression-free survival (PFS).Results: The TCR repertoire within DLBCL nodes was abnormally narrow relative to non-diseased nodal tissues (P < 0.0001). In DLBCL, a highly dominant single T-cell clone was associated with inferior 4-year OS rate of 60.0% [95% confidence interval (CI), 31.7%-79.6%], compared with 79.8% in patients with a low dominant clone (95% CI, 66.7%-88.5%; P ¼ 0.005). A highly dominant clone also predicted inferior 4-year PFS rate of 46.6% (95% CI, 22.5%-76.6%) versus 72.6% (95% CI, 58.8%-82.4%, P ¼ 0.008) for a low dominant clone. In keeping, clonal expansions were most pronounced in the EBV þ DLBCL subtype that is known to express immunogenic viral antigens and is associated with particularly poor outcome. Increased T-cell diversity was associated with significantly elevated PD-1, PD-L1, and PD-L2 immune checkpoint molecules. Conclusions: Put together, these findings suggest that the TCR repertoire is a key determinant of the TME. Highly dominant T-cell clonal expansions within the TME are associated with poor outcome in DLBCL treated with conventional frontline therapy.
The mechanisms that drive T cell aging are not understood. We report that children and adult telomerase mutation carriers with short telomere length (TL) develop a T cell immunodeficiency that can manifest in the absence of bone marrow failure and causes life-threatening opportunistic infections. Mutation carriers shared T cell-aging phenotypes seen in adults 5 decades older, including depleted naive T cells, increased apoptosis, and restricted T cell repertoire. T cell receptor excision circles (TRECs) were also undetectable or low, suggesting that newborn screening may identify individuals with germline telomere maintenance defects. Telomerase-null mice with short TL showed defects throughout T cell development, including increased apoptosis of stimulated thymocytes, their intrathymic precursors, in addition to depleted hematopoietic reserves. When we examined the transcriptional programs of T cells from telomerase mutation carriers, we found they diverged from older adults with normal TL. Short telomere T cells upregulated DNA damage and intrinsic apoptosis pathways, while older adult T cells upregulated extrinsic apoptosis pathways and programmed cell death 1 (PD-1) expression. T cells from mice with short TL also showed an active DNA-damage response, in contrast with old WT mice, despite their shared propensity to apoptosis. Our data suggest there are TL-dependent and TL-independent mechanisms that differentially contribute to distinct molecular programs of T cell apoptosis with aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.