[1] Cenozoic biostratigraphic, cosmogenic isotope, magnetostratigraphic, and cyclostratigraphic data derived from Integrated Ocean Drilling Program Expedition 302, the Arctic Coring Expedition (ACEX), are merged into a coherent age model. This age model has low resolution because of poor core recovery, limited availability of biostratigraphic information, and the complex nature of the magnetostratigraphic record. One 2.2 Ma long hiatus occurs in the late Miocene; another spans 26 Ma (18.2-44.4 Ma). The average sedimentation rate in the recovered Cenozoic sediments is about 15 m/Ma. Core-seismic correlation links the ACEX sediments to the reflection seismic stratigraphy of line AWI-91090, on which the ACEX sites were drilled. This seismostratigraphy can be correlated over wide geographic areas in the central Arctic Ocean, implying that the ACEX age model can be extended well beyond the drill sites.
for defining the middle-late Eocene boundary Integrated biomagnetostratigraphy of the Alano section (NE Italy): A proposal Email alerting services articles cite this article to receive free e-mail alerts when new www.gsapubs.org/cgi/alerts click Subscribe America Bulletin to subscribe to Geological Society of www.gsapubs.org/subscriptions/ click Permission request to contact GSA http://www.geosociety.org/pubs/copyrt.htm#gsa click official positions of the Society.citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect presentation of diverse opinions and positions by scientists worldwide, regardless of their race, includes a reference to the article's full citation. GSA provides this and other forums for the the abstracts only of their articles on their own or their organization's Web site providing the posting to further education and science. This file may not be posted to any Web site, but authors may post works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent their employment. Individual scientists are hereby granted permission, without fees or further
a b s t r a c t a r t i c l e i n f oThe enigmatic middle Eocene climatic optimum (MECO) is a transient (∼ 500 kyr) warming event that significantly interrupted at ∼ 40 Ma the long-term cooling through the middle and late Eocene, eventually resulting in establishment of permanent Antarctic ice-sheet. This event is still poorly known and data on the biotic response are so far scarce. Here we present a detailed planktonic foraminiferal analysis of the MECO interval from a marginal basin of the central-western Tethys (Alano section, northeastern Italy). The expanded and continuous Alano section provides an excellent record of this event and offers an appealing opportunity to better understand the role of climate upon calcareous plankton evolution. A sapropel-like interval, characterized by excursions in both the carbon and oxygen bulk-carbonate isotope records, represents the lithological expression of the post-MECO event in the study area and follows the δ 18 O negative shift, interpreted as representing the MECO warming. High-resolution quantitative analysis performed on both N38 μm and N 63 μm fractions reveals pronounced and complex changes in planktonic foraminiferal assemblages indicating a strong environmental perturbation that parallels the variations of the stable isotope curves corresponding to the MECO and post-MECO intervals. These changes consist primarily in a marked increase in abundance of the relatively eutrophic subbotinids and of the small, low-oxygen tolerant Streptochilus, Chiloguembelina and Pseudohastigerina. At the same time, the arrival of the abundant opportunist eutrophic Jenkinsina and Pseudoglobigerinella bolivariana, typical species of very high-productivity areas, also occurs. The pronounced shift from oligotrophic to more eutrophic, opportunist, low-oxygen tolerant planktonic foraminiferal assemblages suggests increased nutrient input and surface ocean productivity in response to the environmental perturbation associated with the MECO. Particularly critical environmental conditions have been reached during the deposition of the sapropel-like beds as testified by the presence of common giant and/or odd morphotypes. This is interpreted as evidence of transient alteration in the ocean chemistry. The enhanced surface water productivity inferred by planktonic foraminiferal assemblages at the onset of the event should have resulted in heavier δ 13 C values. The recorded lightening of the carbon stable isotope preceding the maximum warmth therefore represents a robust indication that it derives principally by a conspicuous increase of pCO 2 . The increased productivity of surface waters, also supported by geochemical data, may have acted as mechanism for pCO 2 reduction and returned the climate system to the general Eocene cooling trend. The oxygen-depleted deep waters and the organic carbon burial following the peak of the MECO event represent the local response to the MECO warming and suggest that high sequestration of organic matter, if representing a widespread response to this event, m...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.