PABA/NO is a diazeniumdiolate of structure Me(2)NN(O)=NOAr (where Ar is a 5-substituted-2,4-dinitrophenyl ring whose 5-substituent is N-methyl-p-aminobenzoic acid). It has shown activity against human ovarian cancer xenografts in mice rivaling that of cisplatin, but it is poorly soluble and relatively unstable in water. Here we report structure-based optimization efforts resulting in three analogues with improved solubility and stability in aqueous solution. We sought to explain PABA/NO's physicochemical uniqueness among these four compounds, whose aminobenzoic acid precursors differ structurally only in the presence or absence of the N-methyl group and/or the position of the carboxyl moiety (meta or para). Studies revealed that PABA/NO's N-methyl-p-aminobenzoic acid substituent is bound to the dinitrobenzene ring via its carboxyl oxygen while the other three are linked through the aniline nitrogen. This constitutes a revision of the previously published PABA/NO structure. All four analogues reacted with GSH to produce bioactive nitric oxide (NO), but PABA/NO was the most reactive. Consistent with PABA/NO's potent suppression of A2780 human ovarian cancer xenograft growth in mice, it was the most potent of the four in the OVCAR-3 cell line.
Here, we explore the chemistry of the previously undocumented E form of diazeniumdiolates having the structure R(1)R(2)NN(O)=NOR(3). Reported crystallographic studies have uniformly revealed the Z configuration, and our attempts to observe a Z --> E conversion through thermal equilibration or photochemical means have, until now, consistently failed to reveal a significant amount of a second conformer. As a typical example, the NMR spectrum of trimethyl derivative Me(2)NN(O)=NOMe revealed no evidence for a second configuration. Electronic structure calculations attribute this finding to a prohibitively high interconversion barrier of approximately 40 kcal/mol. A similar result was obtained when we considered the case of R(1) = Me = R(3) and R(2) = H at the same levels of theory. However, when MeHNN(O)=NOMe was ionized by dissociating the N-H bond, the barrier was calculated to be lower by approximately 20 kcal/mol, with the E form of the anion being favored over Z. This circumstance suggested that an E isomer might be isolable if a Z anion were formed and given sufficient time to assume the E configuration, then quenched by reaction with an electrophile to trap and neutralize the E form and restore the putatively high interconversion barrier. Consistent with this prediction, basifying iPrHNN(O)=NOCH(2)CH(2)Br rapidly led to a six-membered heterocycle that was crystallographically characterized as containing the -N(O)=NO- functional group in the E configuration. The results suggest an approach for generating pairs of Z and E diazeniumdiolates for systematic comparison of the rates at which the individual isomers release bioactive NO and of other physicochemical determinants of their biomedical utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.