Structurally intact tropical forests sequestered ~50% of global terrestrial carbon uptake over the 1990s and early 2000s, removing ~15% of anthropogenic CO 2 emissions 1 – 3 . Climate-driven vegetation models typically predict that this tropical forest ‘carbon sink’ will continue for decades 4 , 5 . Here, we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, we compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 Mg C ha -1 yr -1 (95% CI:0.53-0.79), in contrast to the long-term decline in Amazonian forests 6 . Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric CO 2 and air temperature 7 – 9 . Despite the past stability of the African carbon sink, our data suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including CO 2 , temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, while the Amazonian sink continues to rapidly weaken. Overall, the uptake of carbon into Earth’s intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, observations indicating greater recent carbon uptake into the Northern hemisphere landmass 10 reinforce our conclusion that the intact tropical forest carbon sink has already saturated. This tropical forest sink saturation and ongoing decline has consequences for policies to stabilise Earth’s climate.
After more than a century of research the typical growth pattern of a tree was thought to be fairly well understood. Following germination height growth accelerates for some time, then increment peaks and the added height each year becomes less and less. The cross sectional area (basal area) of the tree follows a similar pattern, but the maximum basal area increment occurs at some time after the maximum height increment. An increase in basal area in a tall tree will add more volume to the stem than the same increase in a short tree, so the increment in stem volume (or mass) peaks very late. Stephenson et al. challenge this paradigm, and suggest that mass increment increases continuously. Their analysis methods however are a textbook example of the 'ecological fallacy', and their conclusions therefore unsupported.
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25°S-61°N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61°C), changes in precipitation (up to AE30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m À2 yr À1 and 3.1 g S m À2 yr À1), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFSForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.