Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through doublestranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2؊ mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation.
Agrobacterium-mediated inoculation of Nicotiana benthamiana plants with Ti plasmids containing tandem genome repeats derived from different strains of the geminivirus beet curly top virus (BCTV) resulted in the production of unit-length recombinant progeny genomes in systemically infected plants. When two putative plus-strand orgins of replication were present in constructs used as inocula, a replicational escape mechanism was favored that resulted in progeny genomes of a single predominant genotype. The genotype was dependent upon the arrangement of repeated parental genomes in the inocula. Sequencing across thejunction between parental BCTV strains in the recombinant progeny allowed mapping of the plus-strand origin of replication to a 20-base-pair sequence within the conserved hairpin found in all geminivirus genomes. In contrast, when inocula contained tandemly repeated BCTV genome sequences but only a single conserved hairpin, a number of different progeny genotypes were simultaneously replicated in infected plants, a result expected if unit-length viral genomes were generated by random intramolecular recombination events. These results and other considerations indicate that geminivirus DNA replication occurs by a rollingcircle mechanism.
DNA methylation is a fundamental epigenetic modification that regulates gene expression and represses endogenous transposons and invading DNA viruses. As a counter-defense, the geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Some geminiviruses have acquired a betasatellite called DNA β. This study presents evidence that suppression of methylation-mediated TGS by the sole betasatellite-encoded protein, βC1, is crucial to the association of Tomato yellow leaf curl China virus (TYLCCNV) with its betasatellite (TYLCCNB). We show that TYLCCNB complements Beet curly top virus (BCTV) L2- mutants deficient for methylation inhibition and TGS suppression, and that cytosine methylation levels in BCTV and TYLCCNV genomes, as well as the host genome, are substantially reduced by TYLCCNB or βC1 expression. We also demonstrate that while TYLCCNB or βC1 expression can reverse TGS, TYLCCNV by itself is ineffective. Thus its AC2/AL2 protein, known to have suppression activity in other geminiviruses, is likely a natural mutant in this respect. A yeast two-hybrid screen of candidate proteins, followed by bimolecular fluorescence complementation analysis, revealed that βC1 interacts with S-adenosyl homocysteine hydrolase (SAHH), a methyl cycle enzyme required for TGS. We further demonstrate that βC1 protein inhibits SAHH activity in vitro. That βC1 and other geminivirus proteins target the methyl cycle suggests that limiting its product, S-adenosyl methionine, may be a common viral strategy for methylation interference. We propose that inhibition of methylation and TGS by βC1 stabilizes geminivirus/betasatellite complexes.
Geminiviruses replicate single-stranded DNA genomes through double-stranded intermediates that associate with cellular histone proteins. Unlike RNA viruses, they are subject to RNA-directed methylation pathways that target viral chromatin and likely lead to transcriptional gene silencing (TGS). Here we present evidence that the related geminivirus proteins AL2 and L2 are able to suppress this aspect of host defense. AL2 and L2 interact with and inactivate adenosine kinase (ADK), which is required for efficient production of S-adenosyl methionine, an essential methyltransferase cofactor. We demonstrate that the viral proteins can reverse TGS of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana when overexpressed from a Potato virus X vector and that reversal of TGS by geminiviruses requires L2 function. We also show that AL2 and L2 cause ectopic expression of endogenous Arabidopsis thaliana loci silenced by methylation in a manner that correlates with ADK inhibition. However, at one exceptional locus, ADK inhibition was insufficient and TGS reversal required the transcriptional activation domain of AL2. Using restriction-sensitive PCR and bisulfite sequencing, we showed that AL2-mediated TGS suppression is accompanied by reduced cytosine methylation. Finally, using a methylation-sensitive single-nucleotide extension assay, we showed that transgenic expression of AL2 or L2 causes global reduction in cytosine methylation. Our results provide further evidence that viral chromatin methylation is an important host defense and allow us to propose that as a countermeasure, geminivirus proteins reverse TGS by nonspecifically inhibiting cellular transmethylation reactions. To our knowledge, this is the first report that viral proteins can inhibit TGS.
Geminivirus AL2 and L2 proteins cause enhanced susceptibility, characterized primarily by an increase in viral infectivity, when expressed in transgenic plants. Here, we present genetic and biochemical evidence that enhanced susceptibility is attributable to the interaction of AL2 and L2 with SNF1 kinase, a global regulator of metabolism. Specifically, we show that AL2 and L2 inactivate SNF1 in vitro and in vivo. We further demonstrate that expression of an antisense SNF1 transgene in Nicotiana benthamiana plants causes enhanced susceptibility similar to that conditioned by the AL2 and L2 transgenes, whereas SNF1 overexpression leads to enhanced resistance. Transgenic plants expressing an AL2 protein that lacks a significant portion of the SNF1 interaction domain do not display enhanced susceptibility. Together, these observations suggest that the metabolic alterations mediated by SNF1 are a component of innate antiviral defenses and that SNF1 inactivation by AL2 and L2 is a counterdefensive measure. They also indicate that geminiviruses are able to modify host metabolism to their own advantage, and they provide a molecular link between metabolic status and inherent susceptibility to viral pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.