In response to recommendations to redefine statistical significance to p ≤ .005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level.
SignificanceForecasts routinely provide critical information for dangerous weather events but not yet for epidemics. Researchers develop computational models that can be used for infectious disease forecasting, but forecasts have not been broadly compared or tested. We collaboratively compared forecasts from 16 teams for 8 y of dengue epidemics in Peru and Puerto Rico. The comparison highlighted components that forecasts did well (e.g., situational awareness late in the season) and those that need more work (e.g., early season forecasts). It also identified key facets to improve forecasts, including using multiple model ensemble approaches to improve overall forecast skill. Future infectious disease forecasting work can build on these findings and this framework to improve the skill and utility of forecasts.
Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computational efficiency is such that it can be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.