ASTRÉE is an abstract interpretation-based static program analyzer aiming at proving automatically the absence of run time errors in programs written in the C programming language. It has been applied with success to large embedded control-command safety critical realtime software generated automatically from synchronous specifications, producing a correctness proof for complex software without any false alarm in a few hours of computation. This work was supported in part by the French exploratory project ASTRÉE of the Réseau National de recherche et d'innovation en Technologies Logicielles (RNTL).
We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software.The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization (Sect. 3 and 7), the symbolic manipulation of expressions to improve the precision of abstract transfer functions (Sect. 6.3), the octagon (Sect. 6.2.2), ellipsoid (Sect. 6.2.3), and decision tree (Sect. 6.2.4) abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds: Sect. 7.1.2, delayed: Sect. 7.1.3) and the automatic determination of the parameters (parametrized packing: Sect. 7.2).
We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software.The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization (Sect. 3 and 7), the symbolic manipulation of expressions to improve the precision of abstract transfer functions (Sect. 6.3), the octagon (Sect. 6.2.2), ellipsoid (Sect. 6.2.3), and decision tree (Sect. 6.2.4) abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds: Sect. 7.1.2, delayed: Sect. 7.1.3) and the automatic determination of the parameters (parametrized packing: Sect. 7.2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.