Previous analyses of fluids collected from chronic, nonhealing wounds found elevated levels of inflammatory cytokines, elevated levels of proteinases, and low levels of growth factor activity compared with fluids collected from acute, healing wounds. This led to the general hypothesis that chronic inflammation in acute wounds produces elevated levels of proteinases that destroy essential growth factors, receptors, and extracellular matrix proteins, which ultimately prevent wounds from healing. To test this hypothesis further, pro- and activated matrix metalloproteinases (MMP-2 and MMP-9), tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), and the ratios of MMPs/TIMPs were assayed in fluids and biopsies collected from 56 patients with chronic pressure ulcers. Specimens included ulcers treated for 0, 10, and 36 days with conventional therapy or with exogenous cytokine therapies. Quantitative assay data were correlated with the amount of healing. The average MMP-9/TIMP-1 ratio in fluids from 56 ulcers decreased significantly as the chronic pressure ulcers healed. Furthermore, the average MMP-9/TIMP-1 ratio was significantly lower for fluids collected on day 0 from wounds that ultimately healed well (> or =85% reduction in initial wound volume) compared with wounds that healed poorly (< 50% wound volume reduction). These data show that the ratio of MMP-9/TIMP-1 levels is a predictor of healing in pressure ulcers and they provide additional support for the hypothesis that high levels of MMP activity and low levels of MMP inhibitor impair wound healing in chronic pressure ulcers.
Malignant peripheral nerve sheath tumors (MPNST) are highly invasive soft tissue sarcomas that arise within the peripheral nerve and frequently metastasize. To identify molecular events contributing to malignant transformation in peripheral nerve, we compared eight cell lines derived from MPNSTs and seven normal human Schwann cell samples. We found that MPNST lines are heterogeneous in their in vitro growth rates and exhibit diverse alterations in expression of pRb, p53, p14Arf , and p16INK4a proteins. All MPNST cell lines express the epidermal growth factor receptor and lack S100B protein. Global gene expression profiling using Affymetrix oligonucleotide microarrays identified a 159-gene molecular signature distinguishing MPNST cell lines from normal Schwann cells, which was validated in Affymetrix microarray data generated from 45 primary MPNSTs. Expression of Schwann cell differentiation markers (SOX10, CNP, PMP22, and NGFR) was downregulated in MPNSTs whereas neural crest stem cell markers, SOX9 and TWIST1, were overexpressed in MPNSTs. Previous studies have implicated TWIST1 in apoptosis inhibition, resistance to chemotherapy, and metastasis. Reducing TWIST1 expression in MPNST cells using small interfering RNA did not affect apoptosis or chemoresistance but inhibited cell chemotaxis. Our results highlight the use of gene expression profiling in identifying genes and molecular pathways that are potential biomarkers and/or therapeutic targets for treatment of MPNST and support the use of the MPNST cell lines as a primary analytic tool. (Cancer Res 2006; 66(5): 2584-91)
Chondroitin sulfate proteoglycans (CSPGs) are implicated in the regulation of axonal growth. We previously reported that the neurite-promoting activity of laminin is inhibited by association with a Schwann cell-derived CSPG and that endoneurial laminin may be inhibited by this CSPG as well [Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is upregulated after peripheral nerve injury. J Neurobiol 34:41-54]. Mechanisms regulating axonal growth were studied by using an in vitro bioassay in which regenerating embryonic dorsal root ganglionic neurons (DRGn) were grown on sections of normal adult nerve. DRGn achieved slow neuritic growth on sections of normal nerve, which was reduced significantly by treatment with metalloproteinase inhibitors. Similar results were obtained on a synthetic substratum composed of laminin and inhibitory CSPG. DRGn expressed the matrix metalloproteinase, MMP-2, which was transported to the growth cone. Recombinant MMP-2 inactivated the neurite-inhibiting CSPG without hindering the neurite-promoting potential of laminin. Similarly, neuritic growth by DRGn cultured on normal nerve sections was increased markedly by first treating the nerve sections with MMP-2. The proteolytic deinhibition by MMP-2 was equivalent to and nonadditive with that achieved by chondroitinase, suggesting that both enzymes inactivated inhibitory CSPG. Additionally, the increases in neuritic growth resulting from treating nerve sections with MMP-2 or chondroitinase were blocked by anti-laminin antibodies. From these results we conclude that MMP-2 provides a mechanism for the deinhibition of laminin in the endoneurial basal lamina and may play an important role in the regeneration of peripheral nerve.
Understanding the biological pathways critical for common neurofibromatosis type 1 (NF1) peripheral nerve tumours is essential, as there is a lack of tumour biomarkers, prognostic factors and therapeutics. We used gene expression profiling to define transcriptional changes between primary normal Schwann cells (n = 10), NF1-derived primary benign neurofibroma Schwann cells (NFSCs) (n = 22), malignant peripheral nerve sheath tumour (MPNST) cell lines (n = 13), benign neurofibromas (NF) (n = 26) and MPNST (n = 6). Dermal and plexiform NFs were indistinguishable. A prominent theme in the analysis was aberrant differentiation. NFs repressed gene programs normally active in Schwann cell precursors and immature Schwann cells. MPNST signatures strongly differed; genes up-regulated in sarcomas were significantly enriched for genes activated in neural crest cells. We validated the differential expression of 82 genes including the neural crest transcription factor SOX9 and SOX9 predicted targets. SOX9 immunoreactivity was robust in NF and MPSNT tissue sections and targeting SOX9 – strongly expressed in NF1-related tumours – caused MPNST cell death. SOX9 is a biomarker of NF and MPNST, and possibly a therapeutic target in NF1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.