Nitric oxide synthase (NOS) enzymes synthesize nitric oxide, a signal for vasodilatation and neurotransmission at low levels, and a defensive cytotoxin at higher levels. The high active-site conservation among all three NOS isozymes hinders the design of selective NOS inhibitors to treat inflammation, arthritis, stroke, septic shock, and cancer. Our structural and mutagenesis results identified an isozyme-specific induced-fit binding mode linking a cascade of conformational changes to a novel specificity pocket. Plasticity of an isozyme-specific triad of distant second- and third-shell residues modulates conformational changes of invariant first-shell residues to determine inhibitor selectivity. To design potent and selective NOS inhibitors, we developed the anchored plasticity approach: anchor an inhibitor core in a conserved binding pocket, then extend rigid bulky substituents towards remote specificity pockets, accessible upon conformational changes of flexible residues. This approach exemplifies general principles for the design of selective enzyme inhibitors that overcome strong active-site conservation.
This paper describes the development of a QSAR model for the rational control of functional duration of topical long-acting dual D(2)-receptor/beta(2)-adrenoceptor agonists for the treatment of chronic obstructive pulmonary disease. A QSAR model highlighted the importance of lipophilicity and ionization in controlling beta(2) duration. It was found that design rules logD(7.4) > 2, secondary amine pK(a) > 8.0, yielded ultra-long duration compounds. This model was used successfully to guide the design of long- and ultra-long-acting compounds. The QSAR model is discussed in terms of the exosite model, and the plasmalemma diffusion microkinetic hypothesis, for the control of beta(2) duration. Data presented strongly suggests that beta(2) duration is primarily controlled by the membrane affinity of these compounds.
4-Methylaminopyridine (4-MAP) (5) is a potent but nonselective nitric oxide synthase (NOS) inhibitor. While simple N-methylation in this series results in poor activity, more elaborate N-substitution such as with 4-piperidine carbamate or amide results in potent and selective inducible NOS inhibition. Evidently, a flipping of the pyridine ring between these new inhibitors allows the piperidine to interact with different residues and confer excellent selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.