To better understand the dynamics of hepatitis C virus and the antiviral effect of interferon-alpha-2b (IFN), viral decline in 23 patients during therapy was analyzed with a mathematical model. The analysis indicates that the major initial effect of IFN is to block virion production or release, with blocking efficacies of 81, 95, and 96% for daily doses of 5, 10, and 15 million international units, respectively. The estimated virion half-life (t1/2) was, on average, 2.7 hours, with pretreatment production and clearance of 10(12) virions per day. The estimated infected cell death rate exhibited large interpatient variation (corresponding t1/2 = 1.7 to 70 days), was inversely correlated with baseline viral load, and was positively correlated with alanine aminotransferase levels. Fast death rates were predictive of virus being undetectable by polymerase chain reaction at 3 months. These findings show that infection with hepatitis C virus is highly dynamic and that early monitoring of viral load can help guide therapy.
Hepatitis C virus (HCV) is the major cause of non-A non-B hepatitis and a leading cause of liver dysfunction worldwide. While the current therapy for chronic HCV infection is parenteral administration of type 1 interferon (IFN), only a fraction of HCV-infected individuals completely respond to treatment. Previous studies have correlated the IFN sensitivity of strain HCV-1b with mutations within a discrete region of the viral nonstructural 5A protein (NS5A), termed the interferon sensitivity determining region (ISDR), suggesting that NS5A may contribute to the IFN-resistant phenotype of HCV. To determine the importance of HCV NS5A and the NS5A ISDR in mediating HCV IFN resistance, we tested whether the NS5A protein could regulate the IFN-induced protein kinase, PKR, a mediator of IFN-induced antiviral resistance and a target of viral and cellular inhibitors. Using multiple approaches, including biochemical, transfection, and yeast genetics analyses, we can now report that NS5A represses PKR through a direct interaction with the protein kinase catalytic domain and that both PKR repression and interaction requires the ISDR. Thus, inactivation of PKR may be one mechanism by which HCV avoids the antiviral effects of IFN. Finally the inhibition of the PKR protein kinase, by NS5A is the first described function for this HCV protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.