Epithelial-mesenchymal transition (EMT) is a cellular process during which epithelial cells acquire mesen chymal phenotypes and behaviour following the down regulation of epithelial features. EMT is triggered in response to signals that cells receive from their micro environment. The epithelial state of the cells in which EMT is initiated is characterized by stable epithelial cell-cell junctions, apical-basal polarity and interac tions with basement membrane. During EMT, changes in gene expression and posttranslational regulation mechanisms lead to the repression of these epithelial characteristics and the acquisition of mesenchymal char acteristics. Cells then display fibroblastlike morphol ogy and cytoarchitecture, as well as increased migratory capacity. Furthermore, these now migratory cells often acquire invasive properties (Fig. 1). EMT was first described by researchers studying early embryogenesis as a programme with welldefined cellular features 1,2. It is now widely accepted that EMT occurs normally during early embryonic development, to enable a variety of morphogenetic events, as well as later in development and during wound healing in adults.
Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.
Comparative analysis of the sea urchin genome has broad implications for the primitive state of deuterostome host defense and the genetic underpinnings of immunity in vertebrates. The sea urchin has an unprecedented complexity of innate immune recognition receptors relative to other animal species yet characterized. These receptor genes include a vast repertoire of 222 Toll-like receptors, a superfamily of more than 200 NACHT domain-leucine-rich repeat proteins (similar to nucleotide-binding and oligomerization domain (NOD) and NALP proteins of vertebrates), and a large family of scavenger receptor cysteine-rich proteins. More typical numbers of genes encode other immune recognition factors. Homologs of important immune and hematopoietic regulators, many of which have previously been identified only from chordates, as well as genes that are critical in adaptive immunity of jawed vertebrates, also are present. The findings serve to underscore the dynamic utilization of receptors and the complexity of immune recognition that may be basal for deuterostomes and predicts features of the ancestral bilaterian form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.