Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra 1 1748-9326/11/045509+15$33.00 c 2011 IOP Publishing Ltd Printed in the UK Environ. Res. Lett. 6 (2011) 045509 I H Myers-Smith et al ecosystems.Here, we (1) synthesize these findings, (2) present a conceptual framework that identifies mechanisms and constraints on shrub increase, (3) explore causes, feedbacks and implications of the increased shrub cover in tundra ecosystems, and (4) address potential lines of investigation for future research. Satellite observations from around the circumpolar Arctic, showing increased productivity, measured as changes in 'greenness', have coincided with a general rise in high-latitude air temperatures and have been partly attributed to increases in shrub cover. Studies indicate that warming temperatures, changes in snow cover, altered disturbance regimes as a result of permafrost thaw, tundra fires, and anthropogenic activities or changes in herbivory intensity are all contributing to observed changes in shrub abundance. A large-scale increase in shrub cover will change the structure of tundra ecosystems and alter energy fluxes, regional climate, soil-atmosphere exchange of water, carbon and nutrients, and ecological interactions between species. In order to project future rates of shrub expansion and understand the feedbacks to ecosystem and climate processes, future research should investigate the species or trait-specific responses of shrubs to climate change including: (1) the temperature sensitivity of shrub growth, (2) factors controlling the recruitment of new individuals, and (3) the relative influence of the positive and negative feedbacks involved in shrub expansion.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation -and associated ecosystem consequences -have the potential to be much greater than we have observed to date.
At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.
Rapid climate warming in the tundra biome has been linked to increasing shrub dominance 1-4 . Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost 2,5-8 , yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate-growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ∼42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing 4 and most of the global permafrost soil carbon pool is stored 9 . The observed variation in climate-shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.The Arctic is warming more rapidly than lower latitudes owing to climate amplification involving temperature, water vapour, albedo and sea ice feedbacks 5,7 . Tundra ecosystems are thus predicted to respond more rapidly to climate change than other terrestrial ecosystems 4 . The tundra biome spans Arctic and alpine regions that have similar plant species pools and mean climates, yet vary in topography, seasonality, land cover and glaciation history. Concurrent with the recent high-latitude warming trend 7 , repeat photography and vegetation surveys have shown widespread expansion of shrubs 1-3 , characterized by increased canopy cover, height and abundance. However, climate warming 7 and shrub increase 2,10 have not occurred at all sites. Models predict that warming of 2-10 • C (ref. 11) could convert as much as half of current tundra to 'shrubland' by the end of the twenty-first century 8 , but the uniformity of the frequently cited relationship between climate
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.