The recently discovered orexigenic peptide ghrelin is produced primarily by the stomach and circulates in blood at levels that increase during prolonged fasting in rats. When administered to rodents at supraphysiological doses, ghrelin activates hypothalamic neuropeptide Y/agouti gene-related protein neurons and increases food intake and body weight. These findings suggest that ghrelin may participate in meal initiation. As a first step to investigate this hypothesis, we sought to determine whether circulating ghrelin levels are elevated before the consumption of individual meals in humans. Ghrelin, insulin, and leptin were measured by radioimmunoassay in plasma samples drawn 38 times throughout a 24-h period in 10 healthy subjects provided meals on a fixed schedule. Plasma ghrelin levels increased nearly twofold immediately before each meal and fell to trough levels within 1 h after eating, a pattern reciprocal to that of insulin. Intermeal ghrelin levels displayed a diurnal rhythm that was exactly in phase with that of leptin, with both hormones rising throughout the day to a zenith at 0100, then falling overnight to a nadir at 0900. Ghrelin levels sampled during the troughs before and after breakfast correlated strongly with 24-h integrated area under the curve values (r ؍ 0.873 and 0.954, respectively), suggesting that these convenient, single measurements might serve as surrogates for 24-h profiles to estimate overall ghrelin levels. Circulating ghrelin also correlated positively with age (r ؍ 0.701). The clear preprandial rise and postprandial fall in plasma ghrelin levels support the hypothesis that ghrelin plays a physiological role in meal initiation in humans.
Melanocortins are peptides, cleaved from the pro-opiomelanocortin (POMC) precursor, that act in the brain to reduce food intake and are potential mediators of leptin action. In the forebrain, melanocortins are derived from POMC-containing neurons of the hypothalamic arcuate nucleus. To test the hypothesis that these POMC neurons are regulated by leptin, we used in situ hybridization to determine whether reduced leptin signaling (as occurs in fasting), genetic leptin deficiency (in obese ob/ob mice), or genetic leptin resistance (in obese db/db mice) lower expression of POMC mRNA. We further hypothesized that leptin administration would raise hypothalamic POMC mRNA levels in leptin-deficient animals, but not in mice with defective leptin receptors. In wild-type mice (n = 12), fasting for 48 h lowered POMC mRNA levels in the rostral arcuate nucleus by 53%, relative to values in fed controls (n = 8; P < 0.001). Similarly, arcuate nucleus POMC mRNA levels were reduced by 46 and 70% in genetically obese ob/ob (n = 6) and db/db mice (n = 6), respectively, as compared with wild-type mice (n = 5) (P < 0.01 for both comparisons). Five daily intraperitoneal injections of recombinant murine leptin (150 microg) raised levels of POMC mRNA in the rostral arcuate nucleus of ob/ob mice (n = 8) by 73% over saline-treated ob/ob control values (n = 8; P < 0.01), but was without effect in db/db mice (n = 6). In normal rats, two injections of a low dose of leptin (3.5 microg) into the third cerebral ventricle (n = 15) during a 40-h period of fasting also increased POMC mRNA levels in the rostral arcuate nucleus to values 39% greater than those in vehicle-treated controls (n = 14; P = 0.02). We conclude that reduced central nervous system leptin signaling owing to fasting or to genetic defects in leptin or its receptor lower POMC mRNA levels in the rostral arcuate nucleus. The finding that leptin reverses this effect in ob/ob, but not db/db, mice suggests that leptin stimulates arcuate nucleus POMC gene expression via a pathway involving leptin receptors. These findings support the hypothesis that leptin signaling in the brain involves activation of the hypothalamic melanocortin system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.