Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM's shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.
Forests in Southeast Asia are experiencing some of the highest rates of deforestation and degradation in the world, with natural forest species being replaced by cropland and plantation monoculture. In this work, we have developed an innovative method to accurately map rubber and palm oil plantations using fusion of Landsat-8, Sentinel 1 and 2. We applied cloud and shadow masking, bidirectional reflectance distribution function (BRDF), atmospheric and topographic corrections to the optical imagery and a speckle filter and harmonics for Synthetic Aperture Radar (SAR) data. In this workflow, we created yearly composites for all sensors and combined the data into a single composite. A series of covariates were calculated from optical bands and sampled using reference data of the land cover classes including surface water, forest, urban and built-up, cropland, rubber, palm oil and mangrove. This training dataset was used to create biophysical probability layers (primitives) for each class. These primitives were then used to create land cover and probability maps in a decision tree logic and Monte-Carlo simulations. Validation showed good overall accuracy (84%) for the years 2017 and 2018. Filtering for validation points with high error estimates improved the accuracy up to 91%. We demonstrated and concluded that error quantification is an essential step in land cover classification and land cover change detection. Our overall analysis supports and presents a path for improving present assessments for sustainable supply chain analyses and associated recommendations.
a b s t r a c tThere is growing demand for information regarding the impacts of decisions on ecosystem services and human benefits. Despite the large and growing quantity of published ecosystem services research, there remains a substantial gap between this research and the information required to support decisions.Research often provides models and tools that do not fully link social and ecological systems; are too complex, specialized, and costly to use; and are targeted to outcomes that differ from those needed by decision makers. Decision makers require cost-effective, straightforward, transferable, scalable, meaningful, and defensible methods that can be readily understood. We provide illustrative examples of these gaps between research and practice and describe how researchers can make their work relevant to decision makers by using Benefit Relevant Indicators (BRIs) and choosing models appropriate for particular decision contexts. We use examples primarily from the United States, including cases that illustrate varying degrees of success in closing these gaps. We include a discussion of the challenges and opportunities researchers face in adapting their work to meet the needs of practitioners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.