The Atmosphere‐Space Interactions Monitor (ASIM) was launched to the International Space Station on 2 April 2018. The ASIM payload consists of two main instruments, the Modular X‐ray and Gamma‐ray Sensor (MXGS) for imaging and spectral analysis of Terrestrial Gamma‐ray Flashes (TGFs) and the Modular Multi‐spectral Imaging Array for detection, imaging, and spectral analysis of Transient Luminous Events and lightning. ASIM is the first space mission designed for simultaneous observations of Transient Luminous Events, TGFs, and optical lightning. During the first 10 months of operation (2 June 2018 to 1 April 2019) the MXGS has observed 217 TGFs. In this paper we report several unprecedented measurements and new scientific results obtained by ASIM during this period: (1) simultaneous TGF observations by Fermi Gamma‐ray Burst Monitor and ASIM MXGS revealing the very good detection capability of ASIM MXGS and showing substructures in the TGF, (2) TGFs and Elves produced during the same lightning flash and even simultaneously have been observed, (3) first imaging of TGFs giving a unique source location, (4) strong statistical support for TGFs being produced during the upward propagation of a leader just before a large current pulse heats up the channel and emits a strong optical pulse, and (5) the t50 duration of TGFs observed from space is shorter than previously reported.
In the spring of 2017 an ER‐2 aircraft campaign was undertaken over continental United States to observe energetic radiation from thunderstorms and lightning. The payload consisted of a suite of instruments designed to detect optical signals, electric fields, and gamma rays from lightning. Starting from Georgia, USA, 16 flights were performed, for a total of about 70 flight hours at a cruise altitude of 20 km. Of these, 45 flight hours were over thunderstorm regions. An analysis of two gamma ray glow events that were observed over Colorado at 21:47 UT on 8 May 2017 is presented. We explore the charge structure of the cloud system, as well as possible mechanisms that can produce the gamma ray glows. The thundercloud system we passed during the gamma ray glow observation had strong convection in the core of the cloud system. Electric field measurements combined with radar and radio measurements suggest an inverted charge structure, with an upper negative charge layer and a lower positive charge layer. Based on modeling results, we were not able to unambiguously determine the production mechanism. Possible mechanisms are either an enhancement of cosmic background locally (above or below 20 km) by an electric field below the local threshold or an enhancement of the cosmic background inside the cloud but then with normal polarity and an electric field well above the Relativistic Runaway Electron Avalanche threshold.
We present a complete and systematic search for terrestrial gamma‐ray flashes (TGFs), detected by AGILE, that are associated with radio sferics detected by the World Wide Lightning Location Network (WWLLN) in the period February 2009 to September 2018. The search algorithms and characteristics of these new TGFs will be presented and discussed. The number of WWLLN identified (WI) TGFs shows that previous TGF selection criteria needs to be reviewed as they do not identify all the WI TGFs in the data set. In this analysis we confirm with an independent data set that WI TGFs tend to have shorter time duration than TGFs without a WWLLN match. TGFs occurs more often on coastal and ocean regions compared to the distribution of lightning activity. Several multipulse TGFs were identified and their WWLLN match are always associated with the last gamma‐ray pulse. We also present the first Terrestrial Electron Beam detected by AGILE. This data set together with the TGF sample identified by selection criteria (companion paper Maiorana et al., 2020) constitute the 3rd AGILE TGF catalog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.