Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables.
The 2003 drought event in Europe had major implications on many societal sectors, including energy production, health, forestry and agriculture. The reduced availability of water accompanied by high temperatures led to substantial economic losses on the order of 1.5 Billion Euros, in agriculture alone.
Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.