Several types of glioneuronal tumors are known to induce intractable partial seizures in children and adults. The most frequent are dysembryoplastic neuroepithelial tumors (DNETs) and gangliogliomas. We report here a new clinicopathological entity within the spectrum of glioneuronal tumors observed in 10 children who underwent surgery for refractory epilepsy. These tumors demonstrate a unique, pathognomonic histological pattern and a specific appearance at magnetic resonance imaging (MRI). The most striking neuropathological feature is an angiocentric polarity of the tumor with gliofibrillary acidic protein (GFAP) positive fusiform and bipolar astrocytic cells arranged around blood vessels (perivascular cuffing with tumoral astrocytes). Characteristic MRI findings include involvement of cortical gray and white matter, intrinsically high signal on T1-weighted images, as well as a stalk like extension to the ventricle. Immunohistochemical neuronal markers (neurofilament protein, synaptophysin and chromogranin) confirm the presence of a neuronal cell component. Therefore, the term angiocentric neuroepithelial tumor (ANET) is proposed.
BackgroundThe clinical relevance of MR scanning in children with autism is still an open question and must be considered in light of the evolution of this technology. MRI was judged to be of insufficient value to be included in the standard clinical evaluation of autism according to the guidelines of the American Academy of Neurology and Child Neurology Society in 2000 [1]. However, this statement was based on results obtained from small samples of patients and, more importantly, included mostly insufficient MRI sequences. Our main objective was to evaluate the prevalence of brain abnormalities in a large group of children with a non-syndromic autistic disorder (AD) using T1, T2 and FLAIR MRI sequences.MethodologyMRI inspection of 77 children and adolescents with non-syndromic AD (mean age 7.4±3.6) was performed. All met the DSM-IV and ADI –R criteria for autism. Based on recommended clinical and biological screenings, we excluded patients with infectious, metabolic or genetic diseases, seizures or any other neurological symptoms. Identical MRI inspections of 77 children (mean age 7.0±4.2) without AD, developmental or neurological disorders were also performed. All MRIs were acquired with a 1.5-T Signa GE (3-D T1-FSPGR, T2, FLAIR coronal and axial sequences). Two neuroradiologists independently inspected cortical and sub-cortical regions. MRIs were reported to be normal, abnormal or uninterpretable.Principal FindingsMRIs were judged as uninterpretable in 10% (8/77) of the cases. In 48% of the children (33/69 patients), abnormalities were reported. Three predominant abnormalities were observed, including white matter signal abnormalities (19/69), major dilated Virchow–Robin spaces (12/69) and temporal lobe abnormalities (20/69). In all, 52% of the MRIs were interpreted as normal (36/69 patients).ConclusionsAn unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in non-syndromic autism. These results could contribute to further etiopathogenetic research into autism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.