The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the cortico-thalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse cortico-thalamic visual system..
To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons based on joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
33 The mammalian visual system, from retina to neocortex, has been extensively studied at both 34 anatomical and functional levels. Anatomy indicates the cortico-thalamic system is hierarchical, 35 but characterization of cellular-level functional interactions across multiple levels of this 36 hierarchy is lacking, partially due to the challenge of simultaneously recording activity across 37 numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory) 38 that surveys spiking from units in six cortical and two thalamic regions responding to a battery of 39 visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional 40 connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas. 41Classical functional measures of hierarchy, including visual response latency, receptive field 42 size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated 43 with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral 44 relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide 45 a foundation for understanding coding and dynamics in the mouse cortico-thalamic visual 46 system. 47
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.