Identifying the intrinsic electrocatalytic activity of nanomaterials is challenging, as their characterization usually requires additives and binders whose contributions are difficult to dissect. Herein, we use nano impact electrochemistry as an additive-free method to overcome this problem. Due to the efficient mass transport at individual catalyst nanoparticles, high current densities can be realized. High-resolution bright-field transmission electron microscopy and selected area diffraction studies of the catalyst particles before and after the experiments provide valuable insights in the transformation of the nanomaterials during harsh oxygen evolution reaction (OER) conditions. We demonstrate this for 4 nm sized CoFe 2 O 4 spinel nanoparticles. It is revealed that these particles retain their size and crystal structure even after OER at current densities as high as several kA•m −2 . The steady-state current scales with the particle size distribution and is limited by the diffusion of produced oxygen away from the particle. This versatilely applicable method provides new insights into intrinsic nanocatalyst activities, which is key to the efficient development of improved and precious metal-free catalysts for renewable energy technologies.
Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in...
The electrocatalytic reduction of carbon dioxide (CO2RR) to valuable bulk chemicals is set to become a vital factor in the prevention of environmental pollution and the selective storage of sustainable energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.