In an insurance context, one is often interested in the distribution function of a sum of random variables. Such a sum appears when considering the aggregate claims of an insurance portfolio over a certain reference period. It also appears when considering discounted payments related to a single policy or a portfolio at different future points in time. The assumption of mutual independence between the components of the sum is very convenient from a computational point of view, but sometimes not realistic. In Dhaene, Denuit, Goovaerts, Kaas, Vyncke (2001), we determined approximations for sums of random variables, when the distributions of the components are known, but the stochastic dependence structure between them is unknown or too cumbersome to work with. Practical applications of this theory will be considered in this paper. Both papers are to a large extent an overview of recent research results obtained by the authors, but also new theoretical and practical results are presented.
We investigate multiperiod portfolio selection problems in a Black and Scholes type market where a basket of 1 riskfree and "m" risky securities are traded continuously. We look for the optimal allocation of wealth within the class of "constant mix" portfolios. First, we consider the portfolio selection problem of a decision maker who invests money at predetermined points in time in order to obtain a target capital at the end of the time period under consideration. A second problem concerns a decision maker who invests some amount of money (the initial wealth or provision) in order to be able to fullfil a series of future consumptions or payment obligations. Several optimality criteria and their interpretation within Yaari's dual theory of choice under risk are presented. For both selection problems, we propose accurate approximations based on the concept of comonotonicity, as studied in Dhaene et al. (2002 a,b). Our analytical approach avoids simulation, and hence reduces the computing effort drastically. Copyright The Journal of Risk and Insurance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.