The Scotia Sea ecosystem is a major component of the circumpolar Southern Ocean system, where productivity and predator demand for prey are high. The eastward-flowing Antarctic Circumpolar Current (ACC) and waters from the Weddell-Scotia Confluence dominate the physics of the Scotia Sea, leading to a strong advective flow, intense eddy activity and mixing. There is also strong seasonality, manifest by the changing irradiance and sea ice cover, which leads to shorter summers in the south. Summer phytoplankton blooms, which at times can cover an area of more than 0.5 million km2, probably result from the mixing of micronutrients into surface waters through the flow of the ACC over the Scotia Arc. This production is consumed by a range of species including Antarctic krill, which are the major prey item of large seabird and marine mammal populations. The flow of the ACC is steered north by the Scotia Arc, pushing polar water to lower latitudes, carrying with it krill during spring and summer, which subsidize food webs around South Georgia and the northern Scotia Arc. There is also marked interannual variability in winter sea ice distribution and sea surface temperatures that is linked to southern hemisphere-scale climate processes such as the El Niño-Southern Oscillation. This variation affects regional primary and secondary production and influences biogeochemical cycles. It also affects krill population dynamics and dispersal, which in turn impacts higher trophic level predator foraging, breeding performance and population dynamics. The ecosystem has also been highly perturbed as a result of harvesting over the last two centuries and significant ecological changes have also occurred in response to rapid regional warming during the second half of the twentieth century. This combination of historical perturbation and rapid regional change highlights that the Scotia Sea ecosystem is likely to show significant change over the next two to three decades, which may result in major ecological shifts.
We used the instantaneous growth rate method to determine the effects of food, temperature, krill length, sex, and maturity stage on in situ summer growth of krill across the southwest Atlantic sector of the Southern Ocean. The main aims were to examine the separate effects of each variable and to generate a predictive model of growth based on satellite-derivable environmental data. Both growth increments in length on moulting (GIs) and daily growth rates (DGRs, mm d Ϫ1 ) ranged greatly among the 59 swarms, from 0.58-15% and 0.013-0.32 mm d Ϫ1 . However, all swarms maintained positive mean growth, even those in the low chlorophyll a (Chl a) zone of the central Scotia Sea. Among a suite of indices of food quantity and quality, large-scale monthly Chl a values from SeaWiFS predicted krill growth the best. Across our study area, the great contrast between bloom and nonbloom regions was a major factor driving variation in growth rates, obscuring more subtle effects of food quality. GIs and DGRs decreased with increasing krill length and decreased above a temperature optimum of 0.5ЊC. This probably reflects the onset of thermal stress at the northern limit of krill's range. Thus, growth rates were fastest in the ice edge blooms of the southern Scotia Sea and not at South Georgia as previously suggested. This reflects both the smaller size of the krill and the colder water in the south being optimum for growth. Males tended to have higher GIs than females but longer intermoult periods, leading to similar DGRs between sexes. DGRs of equivalent-size krill tended to decrease with maturity stage, suggesting the progressive allocation of energy toward reproduction rather than somatic growth. Our maximum DGRs are higher than most literature values, equating to a 5.7% increase in mass per day. This value fits within a realistic energy budget, suggesting a maximum carbon ration of ϳ20% d Ϫ1. Over the whole Scotia Sea/South Georgia area, the gross turnover of krill biomass was ϳ1% d Ϫ1.High-latitude ecosystems provide case studies of how environmental variability and change affect marine organisms. These ecosystems are characterized by low seasonal variation in temperatures, yet they are the fastest warming regions on the planet (Vaughan et al. 2003). They also exhibit great variability in phytoplankton abundance, which is related to narrow seasonal windows of primary production. Consequently, polar invertebrates tend to be stenothermal, sensitive even to slight changes in temperature, with life cycles 1 Corresponding author (aat@bas.ac.uk). AcknowledgmentsWe thank the captain, officers, and crew of the RRS James Clark Ross for their professional support during sampling, Peter Ward for running the 2002 cruise, Doug Bone for maintaining the nets, and Kate Arnold for her enthusiastic help with netting. Steve Nicol generously shared a design for the mass-rearing tanks for growth experiments and discussed methodology. Andrew Fleming accessed the SeaWiFS data, provided courtesy of NASA. Comments from two reviewers greatly i...
A compilation of more than 30 studies shows that adult Antarctic krill (Euphausia superba) may frequent benthic habitats year-round, in shelf as well as oceanic waters and throughout their circumpolar range. Net and acoustic data from the Scotia Sea show that in summer 2-20% of the population reside at depths between 200 and 2000 m, and that large aggregations can form above the seabed. Local differences in the vertical distribution of krill indicate that reduced feeding success in surface waters, either due to predator encounter or food shortage, might initiate such deep migrations and results in benthic feeding. Fatty acid and microscopic analyses of stomach content confirm two different foraging habitats for Antarctic krill: the upper ocean, where fresh phytoplankton is the main food source, and deeper water or the seabed, where detritus and copepods are consumed. Krill caught in upper waters retain signals of benthic feeding, suggesting frequent and dynamic exchange between surface and seabed. Krill contained up to 260 nmol iron per stomach when returning from seabed feeding. About 5% of this iron is labile, i.e., potentially available to phytoplankton. Due to their large biomass, frequent benthic feeding, and acidic digestion of particulate iron, krill might facilitate an input of new iron to Southern Ocean surface waters. Deep migrations and foraging at the seabed are significant parts of krill ecology, and the vertical fluxes involved in this behavior are important for the coupling of benthic and pelagic food webs and their elemental repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.