SUMMARY
Expanded GGGGCC nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granules formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human-induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms.
Summary
An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but its pathogenic mechanism remains unclear. Here we use human induced motor neurons (iMNs) to show that repeat-expanded C9ORF72 is haploinsufficient in ALS. We show that C9ORF72 interacts with endosomes and is required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduces C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms leads to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescues patient neuron survival and ameliorates neurodegenerative processes in both gain- and loss-of function C9ORF72 mouse models. Thus, modulating vesicle trafficking can rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN, and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS/FTD.
Familial amyotrophic lateral sclerosis (ALS)-linked mutations in the copper-zinc superoxide dismutase (SOD1) gene cause motor neuron death in about 3% of ALS cases. While the wild-type (wt) protein is anti-apoptotic, mutant SOD1 promotes apoptosis. We now demonstrate that both wt and mutant SOD1 bind the anti-apoptotic protein Bcl-2, providing evidence of a direct link between SOD1 and an apoptotic pathway. This interaction is evident in vitro and in vivo in mouse and human spinal cord. We also demonstrate that in mice and humans, Bcl-2 binds to high molecular weight SDS-resistant mutant SOD1 containing aggregates that are present in mitochondria from spinal cord but not liver. These findings provide new insights into the anti-apoptotic function of SOD1 and suggest that entrapment of Bcl-2 by large SOD1 aggregates may deplete motor neurons of this anti-apoptotic protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.