Kreins et al. report the identification and immunological characterization of a group of TYK2-deficient patients.
Background T follicular helper (Tfh) cells underpin T-cell dependent humoral immunity and the success of most vaccines. Tfh cells also contribute to human immune disorders such as autoimmunity, immunodeficiency and malignancy. Understanding the molecular requirements for the generation and function of Tfh cells will provide strategies for targeting these cells to modulate their behavior in the setting of these immunological abnormalities. Objective To determine the signaling pathways and cellular interactions required for the development and function of Tfh cells in humans. Methods Human primary immunodeficiencies (PIDs) resulting from monogenic mutations provide a unique opportunity to assess the requirement for particular molecules in regulating human lymphocyte function. Circulating Tfh (cTfh) cell subsets, memory B cells and serum Ig levels were quantified and functionally assessed in healthy controls as well as patients with PIDs resulting from mutations in STAT3, STAT1, TYK2, IL21, IL21R, IL10R, IFNGR1/2, IL12RB1, CD40LG, NEMO, ICOS or BTK. Results Loss-of function (LOF) mutations in STAT3, IL10R, CD40LG, NEMO, ICOS or BTK reduced cTfh frequencies. STAT3, IL21/R LOF and STAT1 gain-of function mutations skewed cTfh differentiation towards a phenotype characterized by over-expression of IFNγ and programmed death -1 (PD-1). IFNγ inhibited cTfh function in vitro and in vivo, corroborated by hypergammaglobulinemia in patients with IFNGR1/2, STAT1 and IL12RB1 LOF mutations. Conclusion Specific mutations impact the quantity and quality of cTfh cells, highlighting the need to assess Tfh cells in patients by multiple criteria, including phenotype and function. Furthermore, IFNγ functions in vivo to restrain Tfh-induced B cell differentiation. These findings shed new light on Tfh biology and the integrated signaling pathways required for their generation, maintenance and effector function, and explain compromised humoral immunity in some PIDs.
Interleukin-12 receptor β1 (IL-12Rβ1) deficiency is the most common form of Mendelian susceptibility to mycobacterial disease (MSMD). We undertook an international survey of 141 patients from 102 kindreds in 30 countries. Among 102 probands, the first infection occurred at a mean age of 2.4 years. In 78 patients, this infection was caused by Bacille Calmette-Guérin (BCG; n = 65), environmental mycobacteria (EM; also known as atypical or nontuberculous mycobacteria) (n = 9) or Mycobacterium tuberculosis (n = 4). Twenty-two of the remaining 24 probands initially presented with nontyphoidal, extraintestinal salmonellosis. Twenty of the 29 genetically affected sibs displayed clinical signs (69%); however 8 remained asymptomatic (27%). Nine nongenotyped sibs with symptoms died. Recurrent BCG infection was diagnosed in 15 cases, recurrent EM in 3 cases, recurrent salmonellosis in 22 patients. Ninety of the 132 symptomatic patients had infections with a single microorganism. Multiple infections were diagnosed in 40 cases, with combined mycobacteriosis and salmonellosis in 36 individuals. BCG disease strongly protected against subsequent EM disease (p = 0.00008). Various other infectious diseases occurred, albeit each rarely, yet candidiasis was reported in 33 of the patients (23%). Ninety-nine patients (70%) survived, with a mean age at last follow-up visit of 12.7 years ± 9.8 years (range, 0.5-46.4 yr). IL-12Rβ1 deficiency is characterized by childhood-onset mycobacteriosis and salmonellosis, rare recurrences of mycobacterial disease, and more frequent recurrence of salmonellosis. The condition has higher clinical penetrance, broader susceptibility to infections, and less favorable outcome than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.