Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan(®), TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common comorbidities associated with overweight and metabolic syndrome (MetS). Importantly, NAFLD is one of its most dangerous complications because it can lead to severe liver pathologies, including fibrosis, cirrhosis and hepatic cellular carcinoma. Given the increasing worldwide prevalence of obesity, NAFLD has become the most common cause of chronic liver disease and therefore is a major global health problem. Currently, NAFLD is predominantly regarded as a hepatic manifestation of MetS. However, accumulating evidence indicates that the effects of NAFLD extend beyond the liver and are negatively associated with a range of chronic diseases, most notably cardiovascular disease (CVD), diabetes mellitus type 2 (T2DM) and chronic kidney disease (CKD). It is becoming increasingly clear that these diseases are the result of the same underlying pathophysiological processes associated with MetS, such as insulin resistance, chronic systemic inflammation and dyslipidemia. As a result, they have been shown to be independent reciprocal risk factors. In addition, recent data have shown that NAFLD actively contributes to aggravation of the pathophysiology of CVD, T2DM, and CKD, as well as several other pathologies. Thus, NAFLD is a direct cause of many chronic diseases associated with MetS, and better detection and treatment of fatty liver disease is therefore urgently needed. As non-invasive screening methods for liver disease become increasingly available, detection and treatment of NAFLD in patients with MetS should therefore be considered by both (sub-) specialists and primary care physicians.
The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models.
Nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) is a challenging and multisystem disease that has a high socioeconomic impact. NAFLD/NASH is a main cause of macrovesicular steatosis and has multiple impacts on liver transplantation (LT), on patients on the waiting list for transplant, on post-transplant setting as well as on organ donors. Current data indicate new trends in the area of chronic liver disease. Due to the increased incidence of metabolic syndrome (MetS) and its components, NASH cirrhosis and hepatocellular carcinoma caused by NASH will soon become a major indication for LT. Furthermore, due to an increasing incidence of MetS and, consequently, NAFLD, there will be more steatotic donor livers and less high quality organs available for LT, in addition to a lack of available liver allografts. Patients who have NASH and are candidates for LT have multiple comorbidities and are unique LT candidates. Finally, we discuss long-term grafts and patient survival after LT, the recurrence of NASH and NASH appearing de novo after transplantation. In addition, we suggest topics and areas that require more research for improving the health care of this increasing patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.