Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the
The wake region of high-speed trains is an area of complex turbulent flow characterized by the periodic generation and shedding of vortices, which causes discomfort to passengers and affects the stability and safety of the train. In this study, the unsteady characteristics of the wake flows of three 1:1 scale China Railway High-Speed 380A (CRH380A) high-speed train models with different degrees of simplification were numerically investigated using the improved delayed detached eddy simulation (IDDES) method. Analyses of the aerodynamic forces, train-induced slipstream, and turbulent kinetic energy (TKE) were conducted to determine the effects of the bogies on the wake flow of the high-speed train. It was found that the existence of bogies on the bottom of the train, especially the last bogie, not only enhanced the wake flow but also introduced large perturbances into the wake flow. Moreover, the generation and evolution of the vortices in the wake flows were determined by analyzing the instantaneous flow fields and coherent flow structures that were obtained by the dynamic mode decomposition (DMD) method. The results showed that a pair of large, counter-rotating streamwise vortices in the real model of the high-speed train was generated by the cowcatcher and their intensity was significantly enhanced by perturbances that were introduced by the bogies on the bottom of the train.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.