Somatic point mutations
at a key arginine residue (R132) within
the active site of the metabolic enzyme isocitrate dehydrogenase 1
(IDH1) confer a novel gain of function in cancer cells, resulting
in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite.
Elevated 2-HG levels are implicated in epigenetic alterations and
impaired cellular differentiation. IDH1 mutations have been described
in an array of hematologic malignancies and solid tumors. Here, we
report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1
mutant enzyme that exhibits profound 2-HG lowering in tumor models
and the ability to effect differentiation of primary patient AML samples
ex vivo. Preliminary data from phase 1 clinical trials enrolling patients
with cancers harboring an IDH1 mutation indicate that AG-120 has an
acceptable safety profile and clinical activity.
A Cu(II)-sensing, ratiometric, and selective fluorescent sensor 1, N-butyl-4,5-di[(pyridin-2-ylmethyl)amino]-1,8-naphthalimide, was designed and synthesized on the basis of the mechanism of internal charge transfer (ICT). In aqueous ethanol solutions of 1, the presence of Cu(II) induces the formation of a 1:1 metal-ligand complex, which exhibits a strong, increasing fluorescent emission centered at 475 nm at the expense of the fluorescent emission of 1 centered at 525 nm. [structure: see text]
Inhibitors of mutant
isocitrate dehydrogenase (mIDH) 1 and 2 cancer-associated
enzymes prevent the accumulation of the oncometabolite d-2-hydroxyglutarate
(2-HG) and are under clinical investigation for the treatment of several
cancers harboring an IDH mutation. Herein, we describe the discovery
of vorasidenib (AG-881), a potent, oral, brain-penetrant dual inhibitor
of both mIDH1 and mIDH2. X-ray cocrystal structures allowed us to
characterize the compound binding site, leading to an understanding
of the dual mutant inhibition. Furthermore, vorasidenib penetrates
the brain of several preclinical species and inhibits 2-HG production
in glioma tissue by >97% in an orthotopic glioma mouse model. Vorasidenib
represents a novel dual mIDH1/2 inhibitor and is currently in clinical
development for the treatment of low-grade mIDH glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.