The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.
The consumption of polyphenol-rich foods is associated with a decreased risk of mortality from cardiovascular diseases. Previously, we have demonstrated that the stone of Euterpe oleracea Mart. (açaí) from the Amazon region exerts vasodilator and antioxidant actions. This study examined the effect of açaí stone extract (ASE) on the vascular functional and structural changes and oxidative stress associated with the two-kidney, one-clip (2K-1C) renovascular hypertension. 2K-1C and sham-operated rats were treated with ASE 200 mg/kg/day (or vehicle) for 40 days. Blood pressure was measured by tail plethysmography, and the vascular reactivity was evaluated in the rat isolated mesenteric arterial bed. Mesenteric protein expression of endothelial nitric oxide synthase (eNOS), superoxide dismutase 1 and 2 (SOD1 and SOD2), metalloproteinase 2 (MMP-2), and tissue inhibitor of MMPs (TIMP)-1 was assessed by Western blot; oxidative damage and antioxidant activity by spectrophotometry; MMP-2 levels by gelatin zymography; and structural changes by histological analysis. ASE prevented 2K-1C hypertension and the reduction of acetylcholine-induced vasodilation. The increased levels of malondialdehyde and carbonyl protein were reduced by ASE. SOD, catalase, and glutathione peroxidase activities and the expressions of SOD1 and SOD2, eNOS, and TIMP-1 were decreased in 2K-1C rats and recovered by ASE. In 2K-1C rats, ASE prevented vascular remodeling and the increased expression/levels of MMP-2. These findings indicate that ASE produces antihypertensive effect and prevents the endothelial dysfunction and vascular structural changes in 2K-1C hypertension, probably through mechanisms involving antioxidant effects, NOS activation, and inhibition of MMP-2 activation.
A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression.
The data suggest that a compromised mechanism of antioxidant defense and an increase in oxidative damage contribute to the development of hypertension and associated vascular dysfunction in 2K-1C rats, and that tempol and apocynin prevent these effects.
ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.