High-resolution neural interfaces are essential tools for studying and modulating neural circuits underlying brain function and disease. Because electrodes are miniaturized to achieve higher spatial resolution and channel count, maintaining low impedance and high signal quality becomes a significant challenge. Nanostructured materials can address this challenge because they combine high electrical conductivity with mechanical flexibility and can interact with biological systems on a molecular scale. Unfortunately, fabricating high-resolution neural interfaces from nanostructured materials is typically expensive and time-consuming and does not scale, which precludes translation beyond the benchtop. Two-dimensional (2D) TiC MXene possesses a combination of remarkably high volumetric capacitance, electrical conductivity, surface functionality, and processability in aqueous dispersions distinct among carbon-based nanomaterials. Here, we present a high-throughput microfabrication process for constructing TiC neuroelectronic devices and demonstrate their superior impedance and in vivo neural recording performance in comparison with standard metal microelectrodes. Specifically, when compared to gold microelectrodes of the same size, TiC electrodes exhibit a 4-fold reduction in interface impedance. Furthermore, intraoperative in vivo recordings from the brains of anesthetized rats at multiple spatial and temporal scales demonstrate that TiC electrodes exhibit lower baseline noise, higher signal-to-noise ratio, and reduced susceptibility to 60 Hz interference than gold electrodes. Finally, in neuronal biocompatibility studies, neurons cultured on TiC are as viable as those in control cultures, and they can adhere, grow axonal processes, and form functional networks. Overall, our results indicate that TiC MXene microelectrodes have the potential to become a powerful platform technology for high-resolution biological interfaces.
Prominent neuropathology following trauma, stroke, and various neurodegenerative diseases includes neuronal degeneration as well as loss of long-distance axonal connections. While cell replacement and axonal pathfinding strategies are often explored independently, there is no strategy capable of simultaneously replacing lost neurons and re-establishing long-distance axonal connections in the central nervous system. Accordingly, we have created micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of long integrated axonal tracts spanning discrete neuronal populations. These living micro-TENNs reconstitute the architecture of long-distance axonal tracts, and thus may serve as an effective substrate for targeted neurosurgical reconstruction of damaged pathways in the brain. Cerebral cortical neurons or dorsal root ganglia neurons were precisely delivered into the tubular constructs, and properties of the hydrogel exterior and extracellular matrix internal column (180-500 μm diameter) were optimized for robust neuronal survival and to promote axonal extensions across the 2.0 cm tube length. The very small diameter permits minimally invasive delivery into the brain. In this study, preformed micro-TENNs were stereotaxically injected into naive rats to bridge deep thalamic structures with the cerebral cortex to assess construct survival and integration. We found that micro-TENN neurons survived at least 1 month and maintained their long axonal architecture along the cortical-thalamic axis. Notably, we also found neurite penetration from micro-TENN neurons into the host cortex, with evidence of synapse formation. These micro-TENNs represent a new strategy to facilitate nervous system repair by recapitulating features of neural pathways to restore or modulate damaged brain circuitry.
Objective Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.