Abstract. The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
Abstract. The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC), part of the larger experiment known as Elucidating the Role of Clouds-Circulation Coupling in Climate (EUREC4A), was held in the western Atlantic during the period 17 January–11 February 2020. This paper describes observations made during ATOMIC by the US National Oceanic and Atmospheric Administration's (NOAA) Lockheed WP-3D Orion research aircraft based on the island of Barbados. The aircraft obtained 95 h of observations over 11 flights, many of which were coordinated with the NOAA research ship R/V Ronald H. Brown and autonomous platforms deployed from the ship. Each flight contained a mixture of sampling strategies including high-altitude circles with frequent dropsonde deployment to characterize the large-scale environment, slow descents and ascents to measure the distribution of water vapor and its isotopic composition, stacked legs aimed at sampling the microphysical and thermodynamic state of the boundary layer, and offset straight flight legs for observing clouds and the ocean surface with remote sensing instruments and the thermal structure of the ocean with in situ sensors dropped from the plane. The characteristics of the in situ observations, expendable devices, and remote sensing instrumentation are described, as is the processing used in deriving estimates of physical quantities. Data archived at the National Center for Environmental Information include flight-level data such as aircraft navigation and basic thermodynamic information (NOAA Aircraft Operations Center and NOAA Physical Sciences Laboratory, 2020, https://doi.org/10.25921/7jf5-wv54); high-accuracy measurements of water vapor concentration from an isotope analyzer (National Center for Atmospheric Research, 2020, https://doi.org/10.25921/c5yx-7w29); in situ observations of aerosol, cloud, and precipitation size distributions (Leandro and Chuang, 2020, https://doi.org/10.25921/vwvq-5015); profiles of seawater temperature made with Airborne eXpendable BathyThermographs (AXBTs; NOAA Physical Sciences Laboratory, 2020a, https://doi.org/10.25921/pe39-sx75); radar reflectivity, Doppler velocity, and spectrum width from a nadir-looking W-band radar (NOAA Physical Sciences Laboratory, 2020c, https://doi.org/10.25921/n1hc-dc30); estimates of cloud presence, the cloud-top location, and the cloud-top radar reflectivity and temperature, along with estimates of 10 m wind speed obtained from remote sensing instruments operating in the microwave and thermal infrared spectral regions (NOAA Physical Sciences Laboratory, 2020b, https://doi.org/10.25921/x9q5-9745); and ocean surface wave characteristics from a Wide Swath Radar Altimeter (Prosensing, Inc., 2020, https://doi.org/10.25921/qm06-qx04). Data are provided as netCDF files following Climate and Forecast conventions.
Abstract. The science guiding the EUREC4A campaign and its measurements are presented. EUREC4A comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic – eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice.
Abstract. This paper describes observations obtained during the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) by the US National Oceanic and Atmospheric Administration's (NOAA) Lockheed WP-3D Orion research aircraft based on the island of Barbados during the period Jan 17–Feb 11 2020. The aircraft obtained 95 hours of observations over eleven flights, many of which were coordinated with the NOAA research ship R/V Ronald H. Brown and autonomous platforms deployed from the ship. Each flight contained a mixture of sampling strategies including: high-altitude circles with frequent dropsonde deployment to characterize the large-scale environment; slow descents and ascents to measure the distribution of water vapor and its isotopic composition; stacked legs aimed at sampling the microphysical and thermodynamic state of the boundary layer; and offset straight flight legs for observing clouds and the ocean surface with remote sensing instruments and the thermal structure of the ocean with in situ sensors dropped from the plane. The characteristics of the it in situ observations, expendable devices, and remote sensing instrumentation are described, as is the processing used in deriving estimates of physical quantities. Data archived at the National Center for Environmental Information include flight-level data such as aircraft navigation and basic thermodynamic information (https://doi.org/10.25921/7jf5-wv54); high-accuracy measurements of water vapor concentration from an isotope analyzer (https://doi.org/10.25921/c5yx-7w29); profiles of sea water temperature made with Airborne eXpendable BathyThermographs (AXBTs, https://doi.org/10.25921/pe39-sx75); profiles of radar reflectivity, Doppler velocity, and spectrum width from a nadir-looking W-band (94 GHz) radar (https://doi.org/10.25921/n1hc-dc30); estimates of cloud presence, the cloud top location, and the cloud-top radar reflectivity and temperature, along with estimates of 10-m wind speed obtained from remote sensing instruments operating in the microwave and thermal infrared spectral regions (https://doi.org/10.25921/x9q5-9745); and ocean surface wave characteristics from a Wide Swath Radar Altimeter (https://doi.org/10.25921/qm06-qx04). Data are provided as netCDF files following Climate and Forecast conventions.
We validate satellite methane observations from the Tropospheric Emission Spectrometer (TES) with 151 aircraft vertical profiles over the Pacific from the HIAPER Pole-to-Pole Observation (HIPPO) program. We find that a collocation window of ±750 km and ±24 h does not introduce significant error in comparing TES and aircraft profiles. We validate both the TES standard product (V004) and an experimental product with two pieces of information in the vertical (V005). We determine a V004 mean bias of 65.7 ppb with residual standard deviation of 44.2 ppb. For V005 we determine mean biases (residual standard deviations) in the lower and upper troposphere of 18.2 (31.1) and 49.4 (33.2) ppb, respectively. TES errors show no significant dependence on latitude or surface type. Even when V005 cannot retrieve two pieces of information it still performs better than V004. An observation system simulation experiment (OSSE) with the GEOS-Chem chemical transport model (CTM) and its adjoint shows that TES V004 has only limited value for constraining methane sources. Our successful validation of V005 encourages its production as a standard retrieval to replace V004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.