Several studies have suggested that the genetic liability for autism may be expressed in non-autistic relatives of autistic probands, in behavioral characteristics that are milder but qualitatively similar to the defining features of autism. We employ a variety of direct assessment approaches to examine both personality and language in parents ascertained through having two autistic children (multiple-incidence autism parents) and parents of Down syndrome probands. Multiple-incidence autism parents had higher rates of particular personality characteristics (rigidity, aloofness, hypersensitivity to criticism, and anxiousness), speech and pragmatic language deficits, and more limited friendships than parents in the comparison group. The implications of these findings for future genetic studies of autism are discussed.
Several studies have suggested that the genetic liability for autism may be expressed in non-autistic relatives of autistic probands, in behavioral characteristics that are milder but qualitatively similar to the defining features of autism. We employ a variety of direct assessment approaches to examine both personality and language in parents ascertained through having two autistic children (multiple-incidence autism parents) and parents of Down syndrome probands. Multiple-incidence autism parents had higher rates of particular personality characteristics (rigidity, aloofness, hypersensitivity to criticism, and anxiousness), speech and pragmatic language deficits, and more limited friendships than parents in the comparison group. The implications of these findings for future genetic studies of autism are discussed.
Autism is a highly heritable neurodevelopmental syndrome with a complex genetic etiology for which no disease genes have yet been definitively identified. We ascertained three subjects with autism spectrum disorders and chromosome 2q37.3 terminal deletions, and refined the deletion breakpoint regions using polymorphism mapping and fluorescence in situ hybridization (FISH) probes. We then genotyped polymorphic markers downstream from the breakpoint region in a sample of autism affected sibling pair families. Both the chromosomal breakpoints and linkage analyses focused our attention on the gene centaurin gamma-2 (CENTG2), an attractive candidate gene based also on its function and pattern of expression. We therefore assessed CENTG2 for its involvement in autism by (1) screening its exons for variants in 199 autistic and 160 non-autistic individuals, and (2) genotyping and assessing intra-genic polymorphisms for linkage and linkage disequilibrium (LD). The exon screen revealed a Ser ! Gly substitution in one proband, an Arg ! Gly substitution in another, and a number of additional variants unique to the autism families. No unique variants were found in the control subjects. The genotyping produced strong evidence for linkage from two intronic polymorphisms, with a maximum two-point HLOD value of 3.96 and a posterior probability of linkage (PPL) of 51%. These results were contradicted, however, by substantially weaker evidence for linkage from multi-point analyses and by no evidence of LD. We conclude, therefore, that 2q37.3 continues to be a region of interest for autism susceptibility, and that CENTG2 is an intriguing candidate gene that merits further scrutiny for its role in autism.
Autism is a severe neurodevelopmental disorder defined by social and communication deficits and ritualistic-repetitive behaviors that are detectable in early childhood. The etiology of idiopathic autism is strongly genetic, and oligogenic transmission is likely. The first stage of a two-stage genomic screen for autism was carried out by the Collaborative Linkage Study of Autism on individuals affected with autism from 75 families ascertained through an affected sib-pair. The strongest multipoint results were for regions on chromosomes 13 and 7. The highest maximum multipoint heterogeneity LOD (MMLS/het) score is 3.0 at D13S800 (approximately 55 cM from the telomere) under the recessive model, with an estimated 35% of families linked to this locus. The next highest peak is an MMLS/het score of 2.3 at 19 cM, between D13S217 and D13S1229. Our third highest MMLS/het score of 2.2 is on chromosome 7 and is consistent with the International Molecular Genetic Study of Autism Consortium report of a possible susceptibility locus somewhere within 7q31-33. These regions and others will be followed up in the second stage of our study by typing additional markers in both the original and a second set of identically ascertained autism families, which are currently being collected. By comparing results across a number of studies, we expect to be able to narrow our search for autism susceptibility genes to a small number of genomic regions. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 88:609-615, 1999.
Objective-To apply phenotypic and statistical methods designed to account for heterogeneity to linkage analyses of the autism Collaborative Linkage Study of Autism (CLSA) affected sibling pair families.Method-The CLSA contains two sets of 57 families each; Set 1 has been analyzed previously, whereas this study presents the first analyses of Set 2. The two sets were analyzed independently, and were further split based on the degree of phrase speech delay in the siblings. Linkage analysis was carried out using the posterior probability of linkage (PPL), a Bayesian statistic that provides a mathematically rigorous mechanism for combining linkage evidence across multiple samples. Results-Two-pointPPLs from Set 1 led to the follow-up genotyping of 18 markers around linkage peaks on 1q, 13p, 13q, 16q, and 17q in both sets of families. Multipoint PPLs were then calculated for the entire CLSA sample. These analyses identified four regions with at least modest evidence in support of linkage: 1q at 173 cM, PPL = 0.12; 13p at 21 cM, PPL = 0.16; 16q at 63 cM, PPL= 0.36; Xq at 40 cM, PPL = 0.11. Conclusion-We find strengthened evidence for linkage of autism to chromosomes 1q, 13p, 16q, and Xq, and diminished evidence for linkage to 7q and 13q. The verity of these findings will be tested by continuing to update our PPL analyses with data from additional autism datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.