The use of tumor-treating fields (TTFields) has revolutionized the treatment of recurrent and newly diagnosed glioblastoma (GBM). TTFields are low-intensity, intermediate frequency, alternating electric fields that are applied to tumor regions and cells using non-invasive arrays. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis. Using five non-small cell lung cancer (NSCLC) cell lines we found that there is a variable response in cell proliferation and cell killing between these NSCLC cell lines that was independent of p53 status. TTFields treatment increased the G2/M population, with a concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Temporal changes in gene expression during TTFields exposure was evaluated to identify molecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the cell cycle and cell proliferation pathways. However, the expression of genes found within the BRCA1 DNA-damage response were significantly downregulated (Po0.05) during TTFields treatment. DNA double-strand break (DSB) repair foci increased when cells were exposed to TTFields as did the appearance of chromatid-type aberrations, suggesting an interphase mechanism responsible for cell death involving DNA repair. Exposing cells to TTFields immediately following ionizing radiation resulted in increased chromatid aberrations and a reduced capacity to repair DNA DSBs, which were likely responsible for at least a portion of the enhanced cell killing seen with the combination. These findings suggest that TTFields induce a state of 'BRCAness' leading to a conditional susceptibility resulting in enhanced sensitivity to ionizing radiation and provides a strong rationale for the use of TTFields as a combined modality therapy with radiation or other DNA-damaging agents. Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death in the United States. 1 Non-small cell lung cancer (NSCLC) is the most prevalent type, accounting for~80% of new cases. 2,3 A plethora of treatment options exist including surgical resection, chemotherapy, radiation therapy and immunotherapy. 4,5 Fiveyear survival rates for patients with stage I and II NSCLC arẽ 50% and 30%, respectively. However, despite this myriad of options, 5-year survival rates for patients with late stage IIIA, IIIB and IV are 14%, 5% and 1%, respectively (www.cancer. net), highlighting the need for novel treatment modalities that can be utilized alone or in combination with conventional therapies to increase survival rates.The advent of Tumor-Treating Fields (TTFields), a novel physical treatment modality, has been effective for the treatment of solid, therapy-resistant primary and recurrent tumors. 6-9 TTFields electrodes are non-invasive and deliver a low-intensity (1-3 V/cm) intermediate frequency (100-300 kHz) alternating electric field across the tumor bed. 10 TTFie...
Nuclear factor-KB (NF-KB) activation may play an important role in the pathogenesis of cancer and also in resistance to treatment. Inactivation of the p53 tumor suppressor is a key component of the multistep evolution of most cancers. Links between the NF-KB and p53 pathways are under intense investigation. In this study, we show that the receptor interacting protein 1 (RIP1), a central component of the NF-KB signaling network, negatively regulates p53 tumor suppressor signaling. Loss of RIP1 from cells results in augmented induction of p53 in response to DNA damage, whereas increased RIP1 level leads to a complete shutdown of DNA damage-induced p53 induction by enhancing levels of cellular mdm2. The key signal generated by RIP1 to up-regulate mdm2 and inhibit p53 is activation of NF-KB. The clinical implication of this finding is shown in glioblastoma, the most common primary malignant brain tumor in adults. We show that RIP1 is commonly overexpressed in glioblastoma, but not in grades II and III glioma, and increased expression of RIP1 confers a worse prognosis in glioblastoma. Importantly, RIP1 levels correlate strongly with mdm2 levels in glioblastoma. Our results show a key interaction between the NF-KB and p53 pathways that may have implications for the targeted treatment of glioblastoma.
DAB2IP (DOC-2/DAB2 interactive protein) is a member of the RAS-GTPase-activating protein family. It is often downregulated in metastatic prostate cancer and has been reported as a possible prognostic marker to predict the risk of aggressive prostate cancer. In this study, we furnish several lines of evidence indicating that metastatic human prostate cancer PC3 cells deficient in DAB2IP (shDAB2IP) exhibit increased clonogenic survival in response to ionizing radiation (IR) compared with control cells expressing an endogenous level of DAB2IP (shVector). Radioresistance was also observed in normal prostate cells that are deficient in DAB2IP. This enhanced resistance to IR in DAB2IP-deficient prostate cancer cells is primarily due to faster DNA double-strand break (DSB) repair kinetics. More than 90% of DSBs were repaired in shDAB2IP cells by 8 hours after 2 Gy radiation, whereas only 60% of DSB repair were completed in shVector cells at the same time. Second, upon irradiation, DAB2IP-deficient cells enforced a robust G 2 -M cell cycle checkpoint compared with control cells. Finally, shDAB2IP cells showed resistance to IR-induced apoptosis that could result from a striking decrease in the expression levels of proapoptotic proteins caspase-3, caspase-8, and caspase-9, and significantly higher levels of antiapoptotic proteins Bcl-2 and STAT3 than those in shVector cells. In summary, DAB2IP plays a significant role in prostate cell survival following IR exposure due to enhanced DSB repair, robust G 2 -M checkpoint control, and resistance to IR-induced apoptosis. Therefore, it is important to identify patients with dysregulated DAB2IP for (a) assessing prostate cancer risk and (b) alternative treatment regimens. Cancer Res; 70(7); 2829-39. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.